%------------------------------------------------------------------------------ % Here please write the date of submission of paper or its revisions: % submitted January 4,2012 %------------------------------------------------------------------------------ % \documentclass[12pt, reqno]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts, amssymb, graphicx, color} \usepackage[bookmarksnumbered, colorlinks, plainpages]{hyperref} \textheight 22.5truecm \textwidth 14.5truecm \setlength{\oddsidemargin}{0.35in}\setlength{\evensidemargin}{0.35in} \setlength{\topmargin}{-.5cm} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{summary}[theorem]{Summary} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{problem}[theorem]{Problem} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} % added by author: \newtheorem{remarks}[theorem]{Remarks} \numberwithin{equation}{section} % Author's macros: \usepackage[noadjust]{cite} \renewcommand\citemid{; } % semicolon before optional note \newcommand\R{\mathbb{R}\nonscript\hskip.03em} \newcommand\C{\mathbb{C}\nonscript\hskip.03em} \newcommand\cL{\mathcal{L}} \newcommand\cF{\mathcal{F}} \newcommand\imu{{\rm i}} \newcommand\lin{\operatorname{lin}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \newcommand\sset[2]{\{#1{;}\;#2\}} \newcommand\set[2]{\bigl\{#1{;}\;#2\bigr\}} \newcommand\restrict{\vphantom f\mskip1mu\vrule\mskip2mu} \newcommand\interior[1]{\mathring #1} \newcommand\closure[1]{\overline #1} \newlength\pse %punctuation skip in displayed equations \setlength\pse{.08em} \newcommand\spe{\nobreak\hskip\pse} %shift punctuation at the end of displayed equations \renewcommand\le{\leqslant} \renewcommand\leq{\leqslant} \renewcommand\ge{\geqslant} \renewcommand\geq{\geqslant} % The following brings the colon on the mathematical axis % in math mode: \mathchardef\ordinarycolon\mathcode`\: \mathcode`\:=\string"8000 \begingroup \catcode`\:=\active \gdef:{\mathrel{\mathop\ordinarycolon}} \endgroup \newcommand\tripnorm{ \mathchoice{|\hspace{-0.14em}|\hspace{-0.14em}|} {|\hspace{-0.14em}|\hspace{-0.14em}|} {|\hspace{-0.09em}|\hspace{-0.09em}|} {|\hspace{-0.09em}|\hspace{-0.09em}|}} \newcommand\llim{ \mathchoice{\vcenter{\hbox{${\scriptstyle{-}}$}}} {\vcenter{\hbox{$\scriptstyle{-}$}}} {\vcenter{\hbox{$\scriptscriptstyle{-}$}}} {\vcenter{\hbox{$\scriptscriptstyle{-}$}}}} % End author's macros \input{mathrsfs.sty} \begin{document} \setcounter{page}{121} \noindent\parbox{2.95cm}{\includegraphics*[keepaspectratio=true,scale=0.125]{AFA.jpg}} \noindent\parbox{4.85in}{\hspace{0.1mm}\\[1.5cm]\noindent \qquad Ann. Funct. Anal. 3 (2012), no. 1, 121--127\\ {\footnotesize \qquad \textsc{\textbf{$\mathscr{A}$}nnals of \textbf{$\mathscr{F}$}unctional \textbf{$\mathscr{A}$}nalysis}\\ \qquad ISSN: 2008-8752 (electronic)\\ \qquad URL: \textcolor[rgb]{0.00,0.00,0.99}{www.emis.de/journals/AFA/} }\\[.5in]} \title[Compactness in complex interpolation]{On compactness in complex interpolation} \author[J. Voigt]{J\"urgen Voigt} \address{Fachrichtung Mathematik, Technische Universit\"at Dresden, 01062 Dresden, Germany.} \email{\textcolor[rgb]{0.00,0.00,0.84}{juergen.voigt@tu-dresden.de}} \dedicatory{{\rm Communicated by D. Werner }} \subjclass[2010]{Primary 46B70; Secondary 47B07.} \keywords{Complex interpolation, compact operator function.} \date{Received: 4 January 2012; Accepted: 7 February 2012.} \begin{abstract} We show that, in complex interpolation, an operator function that is compact on one side of the interpolation scale will be compact for all proper interpolating spaces if the right hand side $(Y^0,Y^1)$ is reduced to a single space. A corresponding result, in restricted generality, is shown if the left hand side $(X^0,X^1)$ is reduced to a single space. These results are derived from the fact that a holomorphic operator valued function on an open subset of $\C$ which takes values in the compact operators on part of the boundary is in fact compact operator valued. \end{abstract} \maketitle \vspace{2in} \end{document} %------------------------------------------------------------------------------ % End of journal.tex %------------------------------------------------------------------------------ .