% This paper has been transcribed in Plain TeX by % David R. Wilkins % School of Mathematics, Trinity College, Dublin 2, Ireland % (dwilkins@maths.tcd.ie) % % Trinity College, 2000. \magnification=\magstep1 \vsize=227 true mm \hsize=170 true mm \voffset=-0.4 true mm \hoffset=-5.4 true mm \def\folio{\ifnum\pageno>0 \number\pageno \else\fi} \font\Largebf=cmbx10 scaled \magstep2 \font\largerm=cmr12 \font\largeit=cmti12 \font\largesc=cmcsc10 scaled \magstep1 \font\tensc=cmcsc10 \newfam\scfam \def\sc{\fam\scfam\tensc} \textfont\scfam=\tensc \pageno=0 \null\vskip72pt \centerline{\Largebf ON A THEOREM IN THE} \vskip12pt \centerline{\Largebf CALCULUS OF DIFFERENCES} \vskip24pt \centerline{\Largebf By} \vskip24pt \centerline{\Largebf William Rowan Hamilton} \vskip24pt \centerline{\largerm (British Association Report, 1843, Part~II, pp.\ 2--3.)} \vskip36pt \vfill \centerline{\largerm Edited by David R. Wilkins} \vskip 12pt \centerline{\largerm 2000} \vskip36pt\eject \null\vskip36pt {\largeit\noindent On a Theorem in the Calculus of Differences. By\/} {\largerm Sir} {\largesc William Rowan Hamilton}. \bigbreak \centerline{[{\it Report of the Thirteenth Meeting of the British Association for the Advancement of}} \centerline{{\it Science; held at Cork in August 1843}.} \centerline{(John Murray, London, 1844), Part~II, pp.\ 2--3.]} \bigbreak It is a curious and may be considered as an important problem in the Calculus of Differences, to assign an expression for the sum of the series $${\rm X} = u_n (x + n)^n - u_{n-1} \mathbin{.} {n \over 1} \mathbin{.} (x + n - 1)^n + u_{n-2} \mathbin{.} {n (n - 1) \over 1 \mathbin{.} 2} \mathbin{.} (x + n - 2)^n - \hbox{\&c.}; \eqno (1.)$$ which differs from the series for $\Delta^n x^n$ only by its introducing teh coefficients~$u$, determined by the conditions that $$u_i = +1,\enspace 0, \hbox{ or } -1, \hbox{ according as } x + i > 0,\enspace = 0, \hbox{ or } < 0. \eqno (2.)$$ These conditions may be expressed by the formula $$u_i = {2 \over \pi} \int_0^\infty {dt \over t} \sin (xt + it); \eqno (3.)$$ and if we observe that $$\eqalign{ {d \over dt} \sin (at + b) &= a \sin \left( at + b + {\pi \over 2} \right),\cr \left( {d \over dt} \right)^n \sin (at + b) &= a^n \sin \left( at + b + {n \pi \over 2} \right),\cr}$$ we shall see that the series (1.) may be put under the form $${\rm X} = {2 \over \pi} \int_0^\infty {dt \over t} \left( {d \over dt} \right)^n \Delta^n \sin \left( xt - {n\pi \over 2} \right); \eqno (4.)$$ the characteristic~$\Delta$ of difference being referred to $x$. But $$\eqalign{ \Delta \sin (2 \alpha x + \beta) &= 2 \sin \alpha \sin \left( 2 \alpha x + \beta + \alpha + {\pi \over 2} \right),\cr \Delta^n \sin (2 \alpha x + \beta) &= (2 \sin \alpha)^n \sin \left( 2 \alpha x + \beta + n \alpha + {n \pi \over 2} \right);\cr}$$ therefore, changing $t$, in (4.) to $2 \alpha$, we find $${\rm X} = \int_0^\infty {d\alpha \over \alpha} \, {d^n {\rm A} \over d\alpha^n}, \eqno (5.)$$ if we make, for abridgment, $${\rm A} = {2 \over \pi} \sin \alpha^n \sin (2x\alpha + n\alpha). \eqno (6.)$$ Again, the process of integration by parts gives $$\int_0^\infty {d\alpha \over \alpha^i} \, {d^{n - i + 1} {\rm A} \over d \alpha^{n - i + 1}} = i \int_0^\infty {d\alpha \over \alpha^{i+1}} {d^{n - i} {\rm A} \over d \alpha^{n - i}},$$ provided that the function $${1 \over \alpha^i} {d^{n-i} {\rm A} \over d \alpha^{n-i}}$$ vanishes both when $\alpha = 0$ and when $\alpha = \infty$, and does not become infinite for any intermediate value of $\alpha$, conditions which are satisfied here; we have, therefore, finally, $${\rm X} = 1 \mathbin{.} 2 \mathbin{.} 3 \, \ldots \, n \int_0^\infty d\alpha \, {{\rm A} \over \alpha^{n+1}}. \eqno (7.)$$ Hence, if we make $${\rm P} = {{\rm X} \over 1 \mathbin{.} 2 \mathbin{.} 3 \, \ldots \, n}, \quad\hbox{and}\quad c = 2x + n, \eqno (8.)$$ we shall have the expression $${\rm P} = {2 \over \pi} \int_0^\infty d\alpha \, \left( {\sin \alpha \over \alpha} \right)^n {\sin c \alpha \over \alpha}, \eqno (9.)$$ as a transformation of the formula $$\left. \eqalign{ {\rm P} &= {1 \over 1 \mathbin{.} 2 \mathbin{.} 3 \, \ldots \, n \mathbin{.} 2^n} \biggl\{ (n + c)^n - {n \over 1} (n + c - 2)^n + {n (n - 1) \over 1 \mathbin{.} 2} (n + c - 4)^n - \hbox{\&c.} \cr &\qquad\qquad - (n - c)^n + {n \over 1} (n - c - 2)^n - {n (n - 1) \over 1 \mathbin{.} 2} (n - c - 4)^n + \hbox{\&c.} \biggr\};\cr} \right\} \eqno (10.)$$ each partial series being continued only as far as the quantities raised to the $n$th power are positive. Laplace has arrived at an equivalent transformation, but by a much less simple analysis. \bye .