Subj : Tiny heat pump that relies on changing ambient temperature could To : All From : TechnologyDaily Date : Mon Apr 29 2024 07:00:06 Tiny heat pump that relies on changing ambient temperature could be key to powering IoT devices and sensors without batteries forever Nanoparticles are critical to the process, posit scientists Date: Mon, 29 Apr 2024 05:46:47 +0000 Description: Researchers at the University of Utah have developed a Pyroelectrochemical (PEC) cell that converts thermal energy into electricity. FULL STORY ====================================================================== As IoT technology progresses, the question of how to power these devices, particularly in locations where reliable electrical sources are scarce, presents a significant challenge. Researchers at the University of Utahs College of Engineering have pioneered a new form of battery that could help solve this dilemma. The solution, which is at the proof of concept stage, comes in the form of a pyroelectrochemical cell (PEC). Developed by associate professors of mechanical engineering Roseanne Warren and Shad Roundy, the integrated device harvests ambient thermal energy and converts it into stored electrochemical energy. This effectively creates a supercapacitor or battery, which could be ideal for IoT and sensor applications. Low levels of energy The device works by charging with changes in its surrounding temperatures, whether located inside a vehicle, an aircraft, or even underneath soil in an agricultural environment. Were talking very low levels of energy harvesting," Warren said, "but the ability to have sensors that can be distributed and not need to be recharged in the field is the main advantage. We explored the basic physics of it and found that it could generate a charge with an increase in temperature or a decrease in temperature. Whilst solar cells can provide an alternative power source of IoT devices, the practicalities often present issues. In a lot of environments, you run into two problems, said Roundy. One is that it gets dirty over time. Solar cells have to be kept clean. So in these types of applications, they get dirty and their power degrades. And then there are a lot of applications where you just dont have sunlight available. For example, we work on soil sensors that we put just under the top surface of the soil. Youre not going to get any sunlight. With the use of a pyroelectric composite material made of porous polyvinylidene fluoride (PVDF) and barium titanate nanoparticles as the separator in an electrochemical cell, the devices electrical properties change as it's heated or cooled. This action modifies the polarization of the pyroelectric separator. This shifting of temperatures in turn creates an electric field within the cell, moving ions around and allowing the cell to store energy. Despite only producing up to 100 microjoules per square centimeter from a single heating/cooling cycle, this could be enough for the needs of some IoT applications. The study, funded by the National Science Foundation, is the cover feature in the March 21 edition of the journal Energy & Environmental Science , published by the Royal Society of Chemistry. More from TechRadar Pro Microsoft AI finds new material that could replace lithium batteries How to keep your IoT devices secure Two sides of AI in the Industrial Internet of Things ====================================================================== Link to news story: https://www.techradar.com/pro/tiny-heat-pump-that-relies-on-changing-ambient-t emperature-could-be-key-to-powering-iot-devices-and-sensors-without-batteries- forever-nanoparticles-are-critical-to-the-process-posit-scientists --- Mystic BBS v1.12 A47 (Linux/64) * Origin: tqwNet Technology News (1337:1/100) .