instiki_ncatlab.org.atom.xml - sfeed_tests - sfeed tests and RSS and Atom files
 (HTM) git clone git://git.codemadness.org/sfeed_tests
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
       instiki_ncatlab.org.atom.xml (502820B)
       ---
            1 <feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en">
            2   <title>nLab</title>
            3   <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/HomePage"/>
            4   <link rel="self" href="https://ncatlab.org/nlab/atom_with_content"/>
            5   <updated>2021-07-02T09:22:44Z</updated>
            6   <id>tag:ncatlab.org,2008-11-28:nLab</id>
            7   <subtitle>An Instiki Wiki</subtitle>
            8   <generator uri="http://golem.ph.utexas.edu/instiki/show/HomePage" version="0.19.7(MML+)">Instiki</generator>
            9   <entry>
           10     <title type="html">Urs Frauenfelder</title>
           11     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Urs+Frauenfelder"/>
           12     <updated>2021-07-02T09:22:44Z</updated>
           13     <published>2021-07-02T09:22:46Z</published>
           14     <id>tag:ncatlab.org,2021-07-02:nLab,Urs+Frauenfelder</id>
           15     <author>
           16       <name>Urs Schreiber</name>
           17     </author>
           18     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Urs+Frauenfelder">
           19       <div xmlns="http://www.w3.org/1999/xhtml">
           20 <ul>
           21 <li>
           22 <p><a href='https://www.uni-augsburg.de/en/fakultaet/mntf/math/prof/geom/frauenfelder/'>Institute page</a></p>
           23 </li>
           24 
           25 <li>
           26 <p><a href='https://www.genealogy.math.ndsu.nodak.edu/id.php?id=120240'>MathematicsGenealogy page</a></p>
           27 </li>
           28 </ul>
           29 
           30 <h2 id='selected_writings'>Selected writings</h2>
           31 
           32 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p>
           33 
           34 <ul>
           35 <li><a class='existingWikiWord' href='/nlab/show/Urs+Frauenfelder'>Urs Frauenfelder</a>, <em>Dihedral homology and the moon</em>, J. Fixed Point Theory Appl. <strong>14</strong> (2013) 55–69 (<a href='https://arxiv.org/abs/1204.4549'>arXiv:1204.4549</a>, <a href='https://doi.org/10.1007/s11784-013-0146-z'>doi:10.1007/s11784-013-0146-z</a>)</li>
           36 </ul>
           37 
           38 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>      </div>
           39     </content>
           40   </entry>
           41   <entry>
           42     <title type="html">cyclic loop space</title>
           43     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/cyclic+loop+space"/>
           44     <updated>2021-07-02T09:20:18Z</updated>
           45     <published>2017-02-14T09:56:17Z</published>
           46     <id>tag:ncatlab.org,2017-02-14:nLab,cyclic+loop+space</id>
           47     <author>
           48       <name>Urs Schreiber</name>
           49     </author>
           50     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/cyclic+loop+space">
           51       <div xmlns="http://www.w3.org/1999/xhtml">
           52 <div class='rightHandSide'>
           53 <div class='toc clickDown' tabindex='0'>
           54 <h3 id='context'>Context</h3>
           55 
           56 <h4 id='topology'>Topology</h4>
           57 
           58 <div class='hide'>
           59 <p><strong><a class='existingWikiWord' href='/nlab/show/topology'>topology</a></strong> (<a class='existingWikiWord' href='/nlab/show/general+topology'>point-set topology</a>, <a class='existingWikiWord' href='/nlab/show/point-free+topology'>point-free topology</a>)</p>
           60 
           61 <p>see also <em><a class='existingWikiWord' href='/nlab/show/differential+topology'>differential topology</a></em>, <em><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></em>, <em><a class='existingWikiWord' href='/nlab/show/functional+analysis'>functional analysis</a></em> and <em><a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a> <a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a></em></p>
           62 
           63 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology'>Introduction</a></p>
           64 
           65 <p><strong>Basic concepts</strong></p>
           66 
           67 <ul>
           68 <li>
           69 <p><a class='existingWikiWord' href='/nlab/show/open+subspace'>open subset</a>, <a class='existingWikiWord' href='/nlab/show/closed+subspace'>closed subset</a>, <a class='existingWikiWord' href='/nlab/show/neighborhood'>neighbourhood</a></p>
           70 </li>
           71 
           72 <li>
           73 <p><a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a>, <a class='existingWikiWord' href='/nlab/show/locale'>locale</a></p>
           74 </li>
           75 
           76 <li>
           77 <p><a class='existingWikiWord' href='/nlab/show/topological+base'>base for the topology</a>, <a class='existingWikiWord' href='/nlab/show/neighborhood+base'>neighbourhood base</a></p>
           78 </li>
           79 
           80 <li>
           81 <p><a class='existingWikiWord' href='/nlab/show/finer+topology'>finer/coarser topology</a></p>
           82 </li>
           83 
           84 <li>
           85 <p><a class='existingWikiWord' href='/nlab/show/closed+subspace'>closure</a>, <a class='existingWikiWord' href='/nlab/show/interior'>interior</a>, <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a></p>
           86 </li>
           87 
           88 <li>
           89 <p><a class='existingWikiWord' href='/nlab/show/separation+axioms'>separation</a>, <a class='existingWikiWord' href='/nlab/show/sober+topological+space'>sobriety</a></p>
           90 </li>
           91 
           92 <li>
           93 <p><a class='existingWikiWord' href='/nlab/show/continuous+map'>continuous function</a>, <a class='existingWikiWord' href='/nlab/show/homeomorphism'>homeomorphism</a></p>
           94 </li>
           95 
           96 <li>
           97 <p><a class='existingWikiWord' href='/nlab/show/uniformly+continuous+map'>uniformly continuous function</a></p>
           98 </li>
           99 
          100 <li>
          101 <p><a class='existingWikiWord' href='/nlab/show/embedding+of+topological+spaces'>embedding</a></p>
          102 </li>
          103 
          104 <li>
          105 <p><a class='existingWikiWord' href='/nlab/show/open+map'>open map</a>, <a class='existingWikiWord' href='/nlab/show/closed+map'>closed map</a></p>
          106 </li>
          107 
          108 <li>
          109 <p><a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a>, <a class='existingWikiWord' href='/nlab/show/net'>net</a>, <a class='existingWikiWord' href='/nlab/show/subnet'>sub-net</a>, <a class='existingWikiWord' href='/nlab/show/filter'>filter</a></p>
          110 </li>
          111 
          112 <li>
          113 <p><a class='existingWikiWord' href='/nlab/show/convergence'>convergence</a></p>
          114 </li>
          115 
          116 <li>
          117 <p><a class='existingWikiWord' href='/nlab/show/category'>category</a> <a class='existingWikiWord' href='/nlab/show/Top'>Top</a></p>
          118 
          119 <ul>
          120 <li><a class='existingWikiWord' href='/nlab/show/convenient+category+of+topological+spaces'>convenient category of topological spaces</a></li>
          121 </ul>
          122 </li>
          123 </ul>
          124 
          125 <p><strong><a href='Top#UniversalConstructions'>Universal constructions</a></strong></p>
          126 
          127 <ul>
          128 <li>
          129 <p><a class='existingWikiWord' href='/nlab/show/weak+topology'>initial topology</a>, <a class='existingWikiWord' href='/nlab/show/weak+topology'>final topology</a></p>
          130 </li>
          131 
          132 <li>
          133 <p><a class='existingWikiWord' href='/nlab/show/subspace'>subspace</a>, <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient space</a>,</p>
          134 </li>
          135 
          136 <li>
          137 <p>fiber space, <a class='existingWikiWord' href='/nlab/show/space+attachment'>space attachment</a></p>
          138 </li>
          139 
          140 <li>
          141 <p><a class='existingWikiWord' href='/nlab/show/product+topological+space'>product space</a>, <a class='existingWikiWord' href='/nlab/show/disjoint+union+topological+space'>disjoint union space</a></p>
          142 </li>
          143 
          144 <li>
          145 <p><a class='existingWikiWord' href='/nlab/show/mapping+cylinder'>mapping cylinder</a>, <a class='existingWikiWord' href='/nlab/show/cocylinder'>mapping cocylinder</a></p>
          146 </li>
          147 
          148 <li>
          149 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a>, <a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p>
          150 </li>
          151 
          152 <li>
          153 <p><a class='existingWikiWord' href='/nlab/show/mapping+telescope'>mapping telescope</a></p>
          154 </li>
          155 
          156 <li>
          157 <p><a class='existingWikiWord' href='/nlab/show/colimits+of+normal+spaces'>colimits of normal spaces</a></p>
          158 </li>
          159 </ul>
          160 
          161 <p><strong><a class='existingWikiWord' href='/nlab/show/stuff%2C+structure%2C+property'>Extra stuff, structure, properties</a></strong></p>
          162 
          163 <ul>
          164 <li>
          165 <p><a class='existingWikiWord' href='/nlab/show/nice+topological+space'>nice topological space</a></p>
          166 </li>
          167 
          168 <li>
          169 <p><a class='existingWikiWord' href='/nlab/show/metric+space'>metric space</a>, <a class='existingWikiWord' href='/nlab/show/metric+topology'>metric topology</a>, <a class='existingWikiWord' href='/nlab/show/metrisable+topological+space'>metrisable space</a></p>
          170 </li>
          171 
          172 <li>
          173 <p><a class='existingWikiWord' href='/nlab/show/Kolmogorov+topological+space'>Kolmogorov space</a>, <a class='existingWikiWord' href='/nlab/show/Hausdorff+space'>Hausdorff space</a>, <a class='existingWikiWord' href='/nlab/show/regular+space'>regular space</a>, <a class='existingWikiWord' href='/nlab/show/normal+space'>normal space</a></p>
          174 </li>
          175 
          176 <li>
          177 <p><a class='existingWikiWord' href='/nlab/show/sober+topological+space'>sober space</a></p>
          178 </li>
          179 
          180 <li>
          181 <p><a class='existingWikiWord' href='/nlab/show/compact+space'>compact space</a>, <a class='existingWikiWord' href='/nlab/show/proper+map'>proper map</a></p>
          182 
          183 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+topological+space'>sequentially compact</a>, <a class='existingWikiWord' href='/nlab/show/countably+compact+topological+space'>countably compact</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+space'>locally compact</a>, <a class='existingWikiWord' href='/nlab/show/sigma-compact+topological+space'>sigma-compact</a>, <a class='existingWikiWord' href='/nlab/show/paracompact+topological+space'>paracompact</a>, <a class='existingWikiWord' href='/nlab/show/countably+paracompact+topological+space'>countably paracompact</a>, <a class='existingWikiWord' href='/nlab/show/strongly+compact+topological+space'>strongly compact</a></p>
          184 </li>
          185 
          186 <li>
          187 <p><a class='existingWikiWord' href='/nlab/show/compactly+generated+topological+space'>compactly generated space</a></p>
          188 </li>
          189 
          190 <li>
          191 <p><a class='existingWikiWord' href='/nlab/show/second-countable+space'>second-countable space</a>, <a class='existingWikiWord' href='/nlab/show/first-countable+space'>first-countable space</a></p>
          192 </li>
          193 
          194 <li>
          195 <p><a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible space</a>, <a class='existingWikiWord' href='/nlab/show/locally+contractible+space'>locally contractible space</a></p>
          196 </li>
          197 
          198 <li>
          199 <p><a class='existingWikiWord' href='/nlab/show/connected+space'>connected space</a>, <a class='existingWikiWord' href='/nlab/show/locally+connected+topological+space'>locally connected space</a></p>
          200 </li>
          201 
          202 <li>
          203 <p><a class='existingWikiWord' href='/nlab/show/simply+connected+space'>simply-connected space</a>, <a class='existingWikiWord' href='/nlab/show/semi-locally+simply-connected+topological+space'>locally simply-connected space</a></p>
          204 </li>
          205 
          206 <li>
          207 <p><a class='existingWikiWord' href='/nlab/show/cell+complex'>cell complex</a>, <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complex</a></p>
          208 </li>
          209 
          210 <li>
          211 <p><a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed space</a></p>
          212 </li>
          213 
          214 <li>
          215 <p><a class='existingWikiWord' href='/nlab/show/topological+vector+space'>topological vector space</a>, <a class='existingWikiWord' href='/nlab/show/Banach+space'>Banach space</a>, <a class='existingWikiWord' href='/nlab/show/Hilbert+space'>Hilbert space</a></p>
          216 </li>
          217 
          218 <li>
          219 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p>
          220 </li>
          221 
          222 <li>
          223 <p><a class='existingWikiWord' href='/nlab/show/topological+vector+bundle'>topological vector bundle</a>, <a class='existingWikiWord' href='/nlab/show/topological+K-theory'>topological K-theory</a></p>
          224 </li>
          225 
          226 <li>
          227 <p><a class='existingWikiWord' href='/nlab/show/topological+manifold'>topological manifold</a></p>
          228 </li>
          229 </ul>
          230 
          231 <p><strong>Examples</strong></p>
          232 
          233 <ul>
          234 <li>
          235 <p><a class='existingWikiWord' href='/nlab/show/empty+space'>empty space</a>, <a class='existingWikiWord' href='/nlab/show/point+space'>point space</a></p>
          236 </li>
          237 
          238 <li>
          239 <p><a class='existingWikiWord' href='/nlab/show/discrete+object'>discrete space</a>, <a class='existingWikiWord' href='/nlab/show/codiscrete+space'>codiscrete space</a></p>
          240 </li>
          241 
          242 <li>
          243 <p><a class='existingWikiWord' href='/nlab/show/Sierpinski+space'>Sierpinski space</a></p>
          244 </li>
          245 
          246 <li>
          247 <p><a class='existingWikiWord' href='/nlab/show/order+topology'>order topology</a>, <a class='existingWikiWord' href='/nlab/show/specialization+topology'>specialization topology</a>, <a class='existingWikiWord' href='/nlab/show/Scott+topology'>Scott topology</a></p>
          248 </li>
          249 
          250 <li>
          251 <p><a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a></p>
          252 
          253 <ul>
          254 <li><a class='existingWikiWord' href='/nlab/show/real+number'>real line</a>, <a class='existingWikiWord' href='/nlab/show/plane'>plane</a></li>
          255 </ul>
          256 </li>
          257 
          258 <li>
          259 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder</a>, <a class='existingWikiWord' href='/nlab/show/cone'>cone</a></p>
          260 </li>
          261 
          262 <li>
          263 <p><a class='existingWikiWord' href='/nlab/show/sphere'>sphere</a>, <a class='existingWikiWord' href='/nlab/show/ball'>ball</a></p>
          264 </li>
          265 
          266 <li>
          267 <p><a class='existingWikiWord' href='/nlab/show/circle'>circle</a>, <a class='existingWikiWord' href='/nlab/show/torus'>torus</a>, <a class='existingWikiWord' href='/nlab/show/annulus'>annulus</a>, <a class='existingWikiWord' href='/nlab/show/M%C3%B6bius+strip'>Moebius strip</a></p>
          268 </li>
          269 
          270 <li>
          271 <p><a class='existingWikiWord' href='/nlab/show/polytope'>polytope</a>, <a class='existingWikiWord' href='/nlab/show/polyhedron'>polyhedron</a></p>
          272 </li>
          273 
          274 <li>
          275 <p><a class='existingWikiWord' href='/nlab/show/projective+space'>projective space</a> (<a class='existingWikiWord' href='/nlab/show/real+projective+space'>real</a>, <a class='existingWikiWord' href='/nlab/show/complex+projective+space'>complex</a>)</p>
          276 </li>
          277 
          278 <li>
          279 <p><a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a></p>
          280 </li>
          281 
          282 <li>
          283 <p><a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space</a></p>
          284 </li>
          285 
          286 <li>
          287 <p><a class='existingWikiWord' href='/nlab/show/path'>path</a>, <a class='existingWikiWord' href='/nlab/show/loop'>loop</a></p>
          288 </li>
          289 
          290 <li>
          291 <p><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping spaces</a>: <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>compact-open topology</a>, <a class='existingWikiWord' href='/nlab/show/topology+of+uniform+convergence'>topology of uniform convergence</a></p>
          292 
          293 <ul>
          294 <li><a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a>, <a class='existingWikiWord' href='/nlab/show/path+space'>path space</a></li>
          295 </ul>
          296 </li>
          297 
          298 <li>
          299 <p><a class='existingWikiWord' href='/nlab/show/Zariski+topology'>Zariski topology</a></p>
          300 </li>
          301 
          302 <li>
          303 <p><a class='existingWikiWord' href='/nlab/show/Cantor+space'>Cantor space</a>, <a class='existingWikiWord' href='/nlab/show/Mandelbrot+set'>Mandelbrot space</a></p>
          304 </li>
          305 
          306 <li>
          307 <p><a class='existingWikiWord' href='/nlab/show/Peano+curve'>Peano curve</a></p>
          308 </li>
          309 
          310 <li>
          311 <p><a class='existingWikiWord' href='/nlab/show/line+with+two+origins'>line with two origins</a>, <a class='existingWikiWord' href='/nlab/show/long+line'>long line</a>, <a class='existingWikiWord' href='/nlab/show/Sorgenfrey+line'>Sorgenfrey line</a></p>
          312 </li>
          313 
          314 <li>
          315 <p><a class='existingWikiWord' href='/nlab/show/K-topology'>K-topology</a>, <a class='existingWikiWord' href='/nlab/show/Dowker+space'>Dowker space</a></p>
          316 </li>
          317 
          318 <li>
          319 <p><a class='existingWikiWord' href='/nlab/show/Warsaw+circle'>Warsaw circle</a>, <a class='existingWikiWord' href='/nlab/show/Hawaiian+earring+space'>Hawaiian earring space</a></p>
          320 </li>
          321 </ul>
          322 
          323 <p><strong>Basic statements</strong></p>
          324 
          325 <ul>
          326 <li>
          327 <p><a class='existingWikiWord' href='/nlab/show/Hausdorff+implies+sober'>Hausdorff spaces are sober</a></p>
          328 </li>
          329 
          330 <li>
          331 <p><a class='existingWikiWord' href='/nlab/show/schemes+are+sober'>schemes are sober</a></p>
          332 </li>
          333 
          334 <li>
          335 <p><a class='existingWikiWord' href='/nlab/show/continuous+images+of+compact+spaces+are+compact'>continuous images of compact spaces are compact</a></p>
          336 </li>
          337 
          338 <li>
          339 <p><a class='existingWikiWord' href='/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces'>closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p>
          340 </li>
          341 
          342 <li>
          343 <p><a class='existingWikiWord' href='/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact'>open subspaces of compact Hausdorff spaces are locally compact</a></p>
          344 </li>
          345 
          346 <li>
          347 <p><a class='existingWikiWord' href='/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff'>quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p>
          348 </li>
          349 
          350 <li>
          351 <p><a class='existingWikiWord' href='/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net'>compact spaces equivalently have converging subnet of every net</a></p>
          352 
          353 <ul>
          354 <li>
          355 <p><a class='existingWikiWord' href='/nlab/show/Lebesgue+number+lemma'>Lebesgue number lemma</a></p>
          356 </li>
          357 
          358 <li>
          359 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces'>sequentially compact metric spaces are equivalently compact metric spaces</a></p>
          360 </li>
          361 
          362 <li>
          363 <p><a class='existingWikiWord' href='/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net'>compact spaces equivalently have converging subnet of every net</a></p>
          364 </li>
          365 
          366 <li>
          367 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded'>sequentially compact metric spaces are totally bounded</a></p>
          368 </li>
          369 </ul>
          370 </li>
          371 
          372 <li>
          373 <p><a class='existingWikiWord' href='/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous'>continuous metric space valued function on compact metric space is uniformly continuous</a></p>
          374 </li>
          375 
          376 <li>
          377 <p><a class='existingWikiWord' href='/nlab/show/paracompact+Hausdorff+spaces+are+normal'>paracompact Hausdorff spaces are normal</a></p>
          378 </li>
          379 
          380 <li>
          381 <p><a class='existingWikiWord' href='/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity'>paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p>
          382 </li>
          383 
          384 <li>
          385 <p><a class='existingWikiWord' href='/nlab/show/closed+injections+are+embeddings'>closed injections are embeddings</a></p>
          386 </li>
          387 
          388 <li>
          389 <p><a class='existingWikiWord' href='/nlab/show/proper+maps+to+locally+compact+spaces+are+closed'>proper maps to locally compact spaces are closed</a></p>
          390 </li>
          391 
          392 <li>
          393 <p><a class='existingWikiWord' href='/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings'>injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p>
          394 </li>
          395 
          396 <li>
          397 <p><a class='existingWikiWord' href='/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact'>locally compact and sigma-compact spaces are paracompact</a></p>
          398 </li>
          399 
          400 <li>
          401 <p><a class='existingWikiWord' href='/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact'>locally compact and second-countable spaces are sigma-compact</a></p>
          402 </li>
          403 
          404 <li>
          405 <p><a class='existingWikiWord' href='/nlab/show/second-countable+regular+spaces+are+paracompact'>second-countable regular spaces are paracompact</a></p>
          406 </li>
          407 
          408 <li>
          409 <p><a class='existingWikiWord' href='/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces'>CW-complexes are paracompact Hausdorff spaces</a></p>
          410 </li>
          411 </ul>
          412 
          413 <p><strong>Theorems</strong></p>
          414 
          415 <ul>
          416 <li>
          417 <p><a class='existingWikiWord' href='/nlab/show/Urysohn%27s+lemma'>Urysohn&#39;s lemma</a></p>
          418 </li>
          419 
          420 <li>
          421 <p><a class='existingWikiWord' href='/nlab/show/Tietze+extension+theorem'>Tietze extension theorem</a></p>
          422 </li>
          423 
          424 <li>
          425 <p><a class='existingWikiWord' href='/nlab/show/Tychonoff+theorem'>Tychonoff theorem</a></p>
          426 </li>
          427 
          428 <li>
          429 <p><a class='existingWikiWord' href='/nlab/show/tube+lemma'>tube lemma</a></p>
          430 </li>
          431 
          432 <li>
          433 <p><a class='existingWikiWord' href='/nlab/show/Michael%27s+theorem'>Michael&#39;s theorem</a></p>
          434 </li>
          435 
          436 <li>
          437 <p><a class='existingWikiWord' href='/nlab/show/Brouwer%27s+fixed+point+theorem'>Brouwer&#39;s fixed point theorem</a></p>
          438 </li>
          439 
          440 <li>
          441 <p><a class='existingWikiWord' href='/nlab/show/topological+invariance+of+dimension'>topological invariance of dimension</a></p>
          442 </li>
          443 
          444 <li>
          445 <p><a class='existingWikiWord' href='/nlab/show/Jordan+curve+theorem'>Jordan curve theorem</a></p>
          446 </li>
          447 </ul>
          448 
          449 <p><strong>Analysis Theorems</strong></p>
          450 
          451 <ul>
          452 <li>
          453 <p><a class='existingWikiWord' href='/nlab/show/Heine-Borel+theorem'>Heine-Borel theorem</a></p>
          454 </li>
          455 
          456 <li>
          457 <p><a class='existingWikiWord' href='/nlab/show/intermediate+value+theorem'>intermediate value theorem</a></p>
          458 </li>
          459 
          460 <li>
          461 <p><a class='existingWikiWord' href='/nlab/show/extreme+value+theorem'>extreme value theorem</a></p>
          462 </li>
          463 </ul>
          464 
          465 <p><strong><a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological homotopy theory</a></strong></p>
          466 
          467 <ul>
          468 <li>
          469 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a>, <a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p>
          470 </li>
          471 
          472 <li>
          473 <p><a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a>, <a class='existingWikiWord' href='/nlab/show/deformation+retract'>deformation retract</a></p>
          474 </li>
          475 
          476 <li>
          477 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a>, <a class='existingWikiWord' href='/nlab/show/covering+space'>covering space</a></p>
          478 </li>
          479 
          480 <li>
          481 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p>
          482 </li>
          483 
          484 <li>
          485 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p>
          486 </li>
          487 
          488 <li>
          489 <p><a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a></p>
          490 </li>
          491 
          492 <li>
          493 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead&#39;s theorem</a></p>
          494 </li>
          495 
          496 <li>
          497 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p>
          498 </li>
          499 
          500 <li>
          501 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p>
          502 </li>
          503 
          504 <li>
          505 <p><a class='existingWikiWord' href='/nlab/show/homotopy+extension+property'>homotopy extension property</a>, <a class='existingWikiWord' href='/nlab/show/Hurewicz+cofibration'>Hurewicz cofibration</a></p>
          506 </li>
          507 
          508 <li>
          509 <p><a class='existingWikiWord' href='/nlab/show/topological+cofiber+sequence'>cofiber sequence</a></p>
          510 </li>
          511 
          512 <li>
          513 <p><a class='existingWikiWord' href='/nlab/show/Str%C3%B8m+model+structure'>Strøm model category</a></p>
          514 </li>
          515 
          516 <li>
          517 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a></p>
          518 </li>
          519 </ul>
          520 </div>
          521 
          522 <h4 id='homotopy_theory'>Homotopy theory</h4>
          523 
          524 <div class='hide'>
          525 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p>
          526 
          527 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p>
          528 
          529 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p>
          530 
          531 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p>
          532 
          533 <p><strong>Introductions</strong></p>
          534 
          535 <ul>
          536 <li>
          537 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p>
          538 </li>
          539 
          540 <li>
          541 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p>
          542 </li>
          543 
          544 <li>
          545 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p>
          546 </li>
          547 </ul>
          548 
          549 <p><strong>Definitions</strong></p>
          550 
          551 <ul>
          552 <li>
          553 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p>
          554 </li>
          555 
          556 <li>
          557 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p>
          558 </li>
          559 
          560 <li>
          561 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p>
          562 </li>
          563 
          564 <li>
          565 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p>
          566 
          567 <ul>
          568 <li>
          569 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p>
          570 
          571 <ul>
          572 <li>
          573 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p>
          574 </li>
          575 
          576 <li>
          577 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p>
          578 </li>
          579 
          580 <li>
          581 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p>
          582 </li>
          583 </ul>
          584 </li>
          585 
          586 <li>
          587 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p>
          588 
          589 <ul>
          590 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li>
          591 </ul>
          592 </li>
          593 </ul>
          594 </li>
          595 
          596 <li>
          597 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p>
          598 
          599 <ul>
          600 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li>
          601 </ul>
          602 </li>
          603 </ul>
          604 
          605 <p><strong>Paths and cylinders</strong></p>
          606 
          607 <ul>
          608 <li>
          609 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p>
          610 
          611 <ul>
          612 <li>
          613 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p>
          614 </li>
          615 
          616 <li>
          617 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p>
          618 </li>
          619 </ul>
          620 </li>
          621 
          622 <li>
          623 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p>
          624 
          625 <ul>
          626 <li>
          627 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p>
          628 </li>
          629 
          630 <li>
          631 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p>
          632 </li>
          633 
          634 <li>
          635 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p>
          636 </li>
          637 </ul>
          638 </li>
          639 
          640 <li>
          641 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p>
          642 
          643 <ul>
          644 <li>
          645 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p>
          646 </li>
          647 
          648 <li>
          649 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p>
          650 </li>
          651 </ul>
          652 </li>
          653 </ul>
          654 
          655 <p><strong>Homotopy groups</strong></p>
          656 
          657 <ul>
          658 <li>
          659 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p>
          660 
          661 <ul>
          662 <li>
          663 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p>
          664 
          665 <ul>
          666 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li>
          667 </ul>
          668 </li>
          669 
          670 <li>
          671 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p>
          672 </li>
          673 
          674 <li>
          675 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p>
          676 </li>
          677 
          678 <li>
          679 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p>
          680 </li>
          681 </ul>
          682 </li>
          683 
          684 <li>
          685 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p>
          686 
          687 <ul>
          688 <li>
          689 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p>
          690 
          691 <ul>
          692 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li>
          693 </ul>
          694 </li>
          695 
          696 <li>
          697 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p>
          698 </li>
          699 
          700 <li>
          701 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p>
          702 </li>
          703 </ul>
          704 </li>
          705 
          706 <li>
          707 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p>
          708 
          709 <ul>
          710 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li>
          711 </ul>
          712 </li>
          713 </ul>
          714 
          715 <p><strong>Basic facts</strong></p>
          716 
          717 <ul>
          718 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li>
          719 </ul>
          720 
          721 <p><strong>Theorems</strong></p>
          722 
          723 <ul>
          724 <li>
          725 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p>
          726 </li>
          727 
          728 <li>
          729 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p>
          730 </li>
          731 
          732 <li>
          733 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p>
          734 </li>
          735 
          736 <li>
          737 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p>
          738 </li>
          739 
          740 <li>
          741 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p>
          742 </li>
          743 
          744 <li>
          745 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead&#39;s theorem</a></p>
          746 </li>
          747 
          748 <li>
          749 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p>
          750 </li>
          751 
          752 <li>
          753 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p>
          754 </li>
          755 
          756 <li>
          757 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p>
          758 </li>
          759 </ul>
          760 </div>
          761 </div>
          762 </div>
          763 
          764 <h1 id='contents'>Contents</h1>
          765 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#AsRightBaseChange'>As right base change along <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to \mathbf{B} S^1</annotation></semantics></math></a></li><li><a href='#ordinary_cohomology_of__on_cyclic_cohomology_of_'>Ordinary cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> on cyclic cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></a></li><li><a href='#rational_sullivan_model'>Rational Sullivan model</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div>
          766 <h2 id='idea'>Idea</h2>
          767 
          768 <p>Any <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}X</annotation></semantics></math> has a canonical <a class='existingWikiWord' href='/nlab/show/action'>action</a> (<a class='existingWikiWord' href='/nlab/show/infinity-action'>infinity-action</a>) of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>. The <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}(X)/S^1</annotation></semantics></math> of this action might be called the <em>cyclic loop space</em> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>.</p>
          769 
          770 <p>If <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>X = Spec(A)</annotation></semantics></math> is an <a class='existingWikiWord' href='/nlab/show/affine+variety'>affine variety</a> regarded in <a class='existingWikiWord' href='/nlab/show/derived+algebraic+geometry'>derived algebraic geometry</a>, then <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒪</mi><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{O}(\mathcal{L}Spec(A))</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild homology</a> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒪</mi><mo stretchy='false'>(</mo><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{O}((\mathcal{L}Spec(A))/S^1)</annotation></semantics></math> the corresponding <a class='existingWikiWord' href='/nlab/show/cyclic+homology'>cyclic homology</a>, see the discussion at <em><a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild cohomology</a></em>.</p>
          771 
          772 <p>If <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>X = Y//G</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a> of a <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> by a <a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a> action, regarded as a locally constant <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stack, so that the <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-action on <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{L}(X//G)</annotation></semantics></math> is an <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>B \mathbb{Z}</annotation></semantics></math>-action, then the restriction of the cyclic loop space to the constant loops <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ℒ</mi> <mi>const</mi></msub><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo>→</mo><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{L}_{const}Y//G \to \mathcal{L}(Y//G)</annotation></semantics></math> has been called the <em>twisted loop space</em> in (<a href='#Witten88'>Witten 88</a>). This terminology has been widely adopted, for example in the context of the <a class='existingWikiWord' href='/nlab/show/transchromatic+character'>transchromatic character</a> map (<a href='#Stapleton11'>Stapleton 11</a>)</p>
          773 
          774 <h2 id='properties'>Properties</h2>
          775 
          776 <h3 id='AsRightBaseChange'>As right base change along <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to \mathbf{B} S^1</annotation></semantics></math></h3>
          777 
          778 <p>The cyclic loop space <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X  \sslash S^1</annotation></semantics></math> is equivalently the right <a class='existingWikiWord' href='/nlab/show/base+change'>base change</a>/<a class='existingWikiWord' href='/nlab/show/dependent+product'>dependent product</a> along the canonical point inclusion <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mi>B</mi><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to B S^1</annotation></semantics></math> (<a href='base+change#CyclicLoopSpace'>this prop.</a>) into the <a class='existingWikiWord' href='/nlab/show/delooping'>delooping</a> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math> (the <a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a> of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a> when realized in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>homotopy theory of</a> <a class='existingWikiWord' href='/nlab/show/topological+space'>topological spaces</a>). See also at <em><a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a></em> (<a href='#BMSS19'>BMSS 19, Sec. 2.2</a>, following <a href='#FSS18'>FSS 18, Sec. 3</a>).</p>
          779 
          780 <h3 id='ordinary_cohomology_of__on_cyclic_cohomology_of_'>Ordinary cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> on cyclic cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></h3>
          781 
          782 <p>Let <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/simply+connected+space'>simply connected</a> <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a>.</p>
          783 
          784 <p>The <a class='existingWikiWord' href='/nlab/show/ordinary+cohomology'>ordinary cohomology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>H^\bullet</annotation></semantics></math> of its <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a> is the <a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild homology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>HH</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>HH_\bullet</annotation></semantics></math> of its <a class='existingWikiWord' href='/nlab/show/singular+cohomology'>singular chains</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet(X)</annotation></semantics></math>:</p>
          785 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HH</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
          786   H^\bullet(\mathcal{L}X)
          787     \simeq
          788   HH_\bullet( C^\bullet(X) )
          789   \,.
          790 
          791 </annotation></semantics></math></div>
          792 <p>Moreover the <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-equivariant cohomology of the loop space, hence the ordinary cohomology of the cyclic loop space <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/cyclic+homology'>cyclic homology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>HC</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>HC_\bullet</annotation></semantics></math> of the singular chains:</p>
          793 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HC</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
          794   H^\bullet(\mathcal{L}X \sslash S^1)
          795     \simeq
          796   HC_\bullet( C^\bullet(X) )
          797 
          798 </annotation></semantics></math></div>
          799 <p>(<a href='#Jones87'>Jones 87, Thm. A</a>, review in <a href='#Loday92'>Loday 92, Cor. 7.3.14</a>, <a href='#Loday11'>Loday 11, Sec. 4</a>)</p>
          800 
          801 <p>If the <a class='existingWikiWord' href='/nlab/show/coefficient'>coefficients</a> are <a class='existingWikiWord' href='/nlab/show/rational+number'>rational</a>, and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is of <a class='existingWikiWord' href='/nlab/show/finite+type'>finite type</a> then this may be computed by the <em><a class='existingWikiWord' href='/nlab/show/Sullivan+model+of+loop+space'>Sullivan model for free loop spaces</a></em>, see there the section on <em><a href='Sullivan+model+of+free+loop+space#RelationToHochschildHomology'>Relation to Hochschild homology</a></em>.</p>
          802 
          803 <p>In the special case that the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> carries the structure of a <a class='existingWikiWord' href='/nlab/show/smooth+manifold'>smooth manifold</a>, then the singular cochains on <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> are equivalent to the <a class='existingWikiWord' href='/nlab/show/differential+graded-commutative+algebra'>dgc-algebra</a> of <a class='existingWikiWord' href='/nlab/show/differential+form'>differential forms</a> (the <a class='existingWikiWord' href='/nlab/show/de+Rham+complex'>de Rham algebra</a>) and hence in this case the statement becomes that</p>
          804 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HH</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
          805   H^\bullet(\mathcal{L}X)
          806     \simeq
          807   HH_\bullet( \Omega^\bullet(X) )
          808   \,.
          809 
          810 </annotation></semantics></math></div><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HC</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
          811   H^\bullet(\mathcal{L}X \sslash S^1)
          812     \simeq
          813   HC_\bullet( \Omega^\bullet(X) )
          814   \,.
          815 
          816 </annotation></semantics></math></div>
          817 <p>This is known as <em><a class='existingWikiWord' href='/nlab/show/Jones%27+theorem'>Jones&#39; theorem</a></em> (<a href='#Jones87'>Jones 87</a>)</p>
          818 
          819 <p>An <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>infinity-category theoretic</a> proof of this fact is indicated at <em><a href='Hochschild+cohomology#JonesTheorem'>Hochschild cohomology – Jones’ theorem</a></em>.</p>
          820 
          821 <h3 id='rational_sullivan_model'>Rational Sullivan model</h3>
          822 
          823 <p>See at <em><a class='existingWikiWord' href='/nlab/show/Sullivan+model+of+loop+space'>Sullivan model for free loop space</a></em></p>
          824 
          825 <h2 id='related_concepts'>Related concepts</h2>
          826 
          827 <ul>
          828 <li>
          829 <p><a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a></p>
          830 </li>
          831 
          832 <li>
          833 <p><a class='existingWikiWord' href='/nlab/show/cyclic+loop+stack'>cyclic loop stack</a></p>
          834 </li>
          835 
          836 <li>
          837 <p><a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+orbifold'>free loop stack</a></p>
          838 </li>
          839 </ul>
          840 
          841 <h2 id='references'>References</h2>
          842 
          843 <p>The notion of the cyclic loop space of a topological space appears as:</p>
          844 
          845 <ul>
          846 <li id='Jones87'>
          847 <p><a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John D.S. Jones</a>, <em>Cyclic homology and equivariant homology</em>, Invent. Math. <strong>87</strong>, 403-423 (1987) (<a href='https://math.berkeley.edu/~nadler/jones.pdf'>pdf</a>, <a href='https://doi.org/10.1007/BF01389424'>doi:10.1007/BF01389424</a>)</p>
          848 </li>
          849 
          850 <li>
          851 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</p>
          852 </li>
          853 
          854 <li id='Witten88'>
          855 <p><a class='existingWikiWord' href='/nlab/show/Edward+Witten'>Edward Witten</a>, <em>The index of the Dirac operator in loop space</em>. In Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), volume 1326 of Lecture Notes in Math., pages 161–181. Springer, Berlin, 1988 (<a href='https://doi.org/10.1007/BFb0078045'>doi:10.1007/BFb0078045</a>)</p>
          856 </li>
          857 
          858 <li id='Loday92'>
          859 <p><a class='existingWikiWord' href='/nlab/show/Jean-Louis+Loday'>Jean-Louis Loday</a>, <em>Cyclic Spaces and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-Equivariant Homology</em> (<a href='https://link.springer.com/chapter/10.1007/978-3-662-21739-9_7'>doi:10.1007/978-3-662-21739-9_7</a>)</p>
          860 
          861 <p>Chapter 7 in: <em>Cyclic Homology</em>, Grundlehren <strong>301</strong>, Springer 1992 (<a href='https://link.springer.com/book/10.1007/978-3-662-21739-9'>doi:10.1007/978-3-662-21739-9</a>)</p>
          862 </li>
          863 
          864 <li id='Loday11'>
          865 <p><a class='existingWikiWord' href='/nlab/show/Jean-Louis+Loday'>Jean-Louis Loday</a>, Section 4 of: <em>Free loop space and homology</em>, Chapter 4 in: Janko Latchev, Alexandru Oancea (eds.): <em>Free Loop Spaces in Geometry and Topology</em>, IRMA Lectures in Mathematics and Theoretical Physics <strong>24</strong>, EMS 2015 (<a href='https://arxiv.org/abs/1110.0405'>arXiv:1110.0405</a>, <a href='https://bookstore.ams.org/emsilmtp-24/'>ISBN:978-3-03719-153-8</a>)</p>
          866 </li>
          867 
          868 <li id='Stapleton11'>
          869 <p><a class='existingWikiWord' href='/nlab/show/Nathaniel+Stapleton'>Nathaniel Stapleton</a>, <em>Transchromatic generalized character maps</em>, Algebr. Geom. Topol. 13 (2013) 171-203 (<a href='https://arxiv.org/abs/1110.3346'>arXiv:1110.3346</a>)</p>
          870 </li>
          871 </ul>
          872 
          873 <p>Specifically on cyclic loop spaces of <a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>:</p>
          874 
          875 <ul>
          876 <li><a class='existingWikiWord' href='/nlab/show/Nancy+Hingston'>Nancy Hingston</a>, <em>An Equivariant Model for the Free Loop Space of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>N</mi></msup></mrow><annotation encoding='application/x-tex'>S^N</annotation></semantics></math></em>, American Journal of Mathematics <strong>114</strong> 1 (1992) 139-155 (<a href='https://doi.org/10.2307/2374740'>doi:10.2307/2374740</a>, <a href='https://www.jstor.org/stable/2374740'>jstor:2374740</a>)</li>
          877 </ul>
          878 
          879 <p>See also:</p>
          880 
          881 <ul>
          882 <li><a class='existingWikiWord' href='/nlab/show/Urs+Frauenfelder'>Urs Frauenfelder</a>, <em>Dihedral homology and the moon</em>, J. Fixed Point Theory Appl. <strong>14</strong> (2013) 55–69 (<a href='https://arxiv.org/abs/1204.4549'>arXiv:1204.4549</a>, <a href='https://doi.org/10.1007/s11784-013-0146-z'>doi:10.1007/s11784-013-0146-z</a>)</li>
          883 </ul>
          884 
          885 <p>A version of the cyclic loop space of <a class='existingWikiWord' href='/nlab/show/orbifold'>orbifolds</a>, or at least its restriction to constant loops, namely <a class='existingWikiWord' href='/nlab/show/Huan%27s+inertia+orbifold'>Huan&#39;s inertia orbifold</a>, is discussed in the context of <a class='existingWikiWord' href='/nlab/show/equivariant+elliptic+cohomology'>equivariant elliptic cohomology</a> via <a class='existingWikiWord' href='/nlab/show/Tate+K-theory'>Tate K-theory</a> in:</p>
          886 
          887 <ul>
          888 <li id='Huan18'><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Def. 2.14 of: <em>Quasi-Elliptic Cohomology I</em>, Advances in Mathematics, Volume 337, 15 October 2018, Pages 107-138 (<a href='https://arxiv.org/abs/1805.06305'>arXiv:1805.06305</a>, <a href='https://doi.org/10.1016/j.aim.2018.08.007'>doi:10.1016/j.aim.2018.08.007</a>)</li>
          889 </ul>
          890 
          891 <p>following</p>
          892 
          893 <ul>
          894 <li><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Section 2.1.2 of: <em>Quasi-elliptic cohomology</em>, 2017 (<a href='http://hdl.handle.net/2142/97268'>hdl</a>)</li>
          895 </ul>
          896 
          897 <p>and recalled/expanded on in several followup articles, such as in</p>
          898 
          899 <ul>
          900 <li><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Section 2 of <em>Quasi-theories</em> (<a href='https://arxiv.org/abs/1809.06651'>arXiv:1809.06651</a>)</li>
          901 </ul>
          902 
          903 <p>The above formulation of cyclic loop spaces, in the generality of <a class='existingWikiWord' href='/nlab/show/infinity-stack'>∞-stacks</a>, as right <a class='existingWikiWord' href='/nlab/show/base+change'>base change</a> to the <a class='existingWikiWord' href='/nlab/show/delooping'>delooping</a> of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a>, and its relation to <a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a> in <a class='existingWikiWord' href='/nlab/show/brane'>brane</a>-physics, is due to:</p>
          904 
          905 <ul>
          906 <li id='BMSS19'><a class='existingWikiWord' href='/nlab/show/Vincent+Braunack-Mayer'>Vincent Braunack-Mayer</a>, <a class='existingWikiWord' href='/nlab/show/Hisham+Sati'>Hisham Sati</a>, <a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>: Section 2.2 of <em><a class='existingWikiWord' href='/schreiber/show/Gauge+enhancement+of+Super+M-Branes' title='schreiber'>Gauge enhancement of Super M-Branes via rational parameterized stable homotopy theory</a></em>, Communications in Mathematical Physics, <strong>371</strong> 197 (2019) (<a href='https://doi.org/10.1007/s00220-019-03441-4'>doi:10.1007/s00220-019-03441-4</a>, <a href='https://arxiv.org/abs/1806.01115'>arXiv:1806.01115</a>)</li>
          907 </ul>
          908 
          909 <p>following the analogous discussion in <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational homotopy theory</a> in</p>
          910 
          911 <ul>
          912 <li id='FSS18'><a class='existingWikiWord' href='/nlab/show/Domenico+Fiorenza'>Domenico Fiorenza</a>, <a class='existingWikiWord' href='/nlab/show/Hisham+Sati'>Hisham Sati</a>, <a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>, Section 3 of: <em><a class='existingWikiWord' href='/schreiber/show/T-Duality+from+super+Lie+n-algebra+cocycles+for+super+p-branes' title='schreiber'>T-Duality from super Lie $n$-algebra cocycles for super $p$-branes</a></em>, <a href='http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0005/'>ATMP Volume 22 (2018) Number 5</a>, <a href='http://dx.doi.org/10.4310/ATMP.2018.v22.n5.a3'>doi:10.4310/ATMP.2018.v22.n5.a3</a>, <a href='https://arxiv.org/abs/1611.06536'>arXiv:1611.06536</a>)</li>
          913 </ul>
          914 
          915 <p>with exposition in</p>
          916 
          917 <ul>
          918 <li><a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>, <a href='https://ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes#DoubleDimensionalReduction'>Section 4</a> of: <em><a class='existingWikiWord' href='/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes' title='schreiber'>Super Lie n-algebra of Super p-branes</a></em> (2016)</li>
          919 </ul>
          920 
          921 <p>
          922 </p>
          923 
          924 <p>
          925  
          926 </p>      </div>
          927     </content>
          928   </entry>
          929   <entry>
          930     <title type="html">Nancy Hingston</title>
          931     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Nancy+Hingston"/>
          932     <updated>2021-07-02T09:15:40Z</updated>
          933     <published>2021-07-02T09:14:11Z</published>
          934     <id>tag:ncatlab.org,2021-07-02:nLab,Nancy+Hingston</id>
          935     <author>
          936       <name>Urs Schreiber</name>
          937     </author>
          938     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Nancy+Hingston">
          939       <div xmlns="http://www.w3.org/1999/xhtml">
          940 <ul>
          941 <li>
          942 <p><a href='https://en.wikipedia.org/wiki/Nancy_Hingston'>Wikipedia entry</a></p>
          943 </li>
          944 
          945 <li>
          946 <p><a href='https://science.tcnj.edu/school-information/women-in-science/dr-nancy-hingston/'>Institute page</a></p>
          947 </li>
          948 
          949 <li>
          950 <p><a href='https://science.tcnj.edu/school-information/women-in-science/dr-nancy-hingston/'>Mathematics Genealogy page</a></p>
          951 </li>
          952 </ul>
          953 
          954 <h2 id='selected_writings'>Selected writings</h2>
          955 
          956 <p>On the <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a> of <a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>:</p>
          957 
          958 <ul>
          959 <li><a class='existingWikiWord' href='/nlab/show/Nancy+Hingston'>Nancy Hingston</a>, <em>An Equivariant Model for the Free Loop Space of <math class='maruku-mathml' display='inline' id='mathml_6597653e93efa254ef9530d15b5b7be84786eb66_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>N</mi></msup></mrow><annotation encoding='application/x-tex'>S^N</annotation></semantics></math></em>, American Journal of Mathematics <strong>114</strong> 1 (1992) 139-155 (<a href='https://doi.org/10.2307/2374740'>doi:10.2307/2374740</a>, <a href='https://www.jstor.org/stable/2374740'>jstor:2374740</a>)</li>
          960 </ul>
          961 
          962 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>      </div>
          963     </content>
          964   </entry>
          965   <entry>
          966     <title type="html">Ralph Cohen</title>
          967     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Ralph+Cohen"/>
          968     <updated>2021-07-02T08:58:22Z</updated>
          969     <published>2010-11-26T21:46:21Z</published>
          970     <id>tag:ncatlab.org,2010-11-26:nLab,Ralph+Cohen</id>
          971     <author>
          972       <name>Urs Schreiber</name>
          973     </author>
          974     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Ralph+Cohen">
          975       <div xmlns="http://www.w3.org/1999/xhtml">
          976 <ul>
          977 <li><a href='http://math.stanford.edu/~ralph/'>website</a></li>
          978 </ul>
          979 
          980 <h2 id='selected_writings'>Selected writings</h2>
          981 
          982 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p>
          983 
          984 <ul>
          985 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</li>
          986 </ul>
          987 
          988 <p>On <a class='existingWikiWord' href='/nlab/show/string+topology'>string topology</a>:</p>
          989 
          990 <ul>
          991 <li>
          992 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, John R. Klein, <a class='existingWikiWord' href='/nlab/show/Dennis+Sullivan'>Dennis Sullivan</a>, <em>The homotopy invariance of the string topology loop product and string bracket</em>, J. of Topology 2008 <strong>1</strong>(2):391-408; <a href='http://dx.doi.org/10.1112/jtopol/jtn001'>doi</a></p>
          993 </li>
          994 
          995 <li>
          996 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Homotopy and geometric perspectives on string topology</em> (<a href='http://math.stanford.edu/~ralph/skyesummary.pdf'>pdf</a>)</p>
          997 </li>
          998 
          999 <li id='CohenJones'>
         1000 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John David Stuart Jones</a>, <em>A homotopy theoretic realization of string topology</em> , Math. Ann. 324 (2002), no. 4, (<a href='http://arxiv.org/abs/math/0107187'>arXiv:0107187</a>)</p>
         1001 </li>
         1002 
         1003 <li id='CohenGodin03'>
         1004 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Veronique+Godin'>Veronique Godin</a>, <em><a class='existingWikiWord' href='/nlab/show/A+Polarized+View+of+String+Topology'>A Polarized View of String Topology</a></em> (<a href='http://arxiv.org/abs/math/0303003'>arXiv:math/0303003</a>)</p>
         1005 </li>
         1006 
         1007 <li>
         1008 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Alexander+Voronov'>Alexander Voronov</a>, <em>Notes on string topology</em>, in: <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Kathryn+Hess'>Kathryn Hess</a>, <a class='existingWikiWord' href='/nlab/show/Alexander+Voronov'>Alexander Voronov</a>, <em>String topology and cyclic homology</em>, Advanced courses in mathematics CRM Barcelona, Birkhäuser 2006 (<a href='http://arxiv.org/abs/math/0503625'>math.GT/05036259</a>, <a href='https://doi.org/10.1007/3-7643-7388-1'>doi:10.1007/3-7643-7388-1</a>, <a href='http://gen.lib.rus.ec/get?md5=adde9464705ede0fea6b435edb58fbe7'>pdf</a>)</p>
         1009 </li>
         1010 
         1011 <li>
         1012 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John Jones</a>, <em>Gauge theory and string topology</em> (<a href='http://arxiv.org/abs/1304.0613'>arXiv:1304.0613</a>)</p>
         1013 </li>
         1014 </ul>
         1015 
         1016 <p>On <a class='existingWikiWord' href='/nlab/show/moduli+space+of+monopoles'>moduli spaces of monopoles</a> related to <a class='existingWikiWord' href='/nlab/show/braid+group'>braid groups</a>:</p>
         1017 
         1018 <ul>
         1019 <li>
         1020 <p><a class='existingWikiWord' href='/nlab/show/Fred+Cohen'>Fred Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, B. M. Mann, R. J. Milgram, <em>The topology of rational functions and divisors of surfaces</em>, Acta Math (1991) 166: 163 (<a href='https://doi.org/10.1007/BF02398886'>doi:10.1007/BF02398886</a>)</p>
         1021 </li>
         1022 
         1023 <li>
         1024 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, John D. S. Jones <em>Monopoles, braid groups, and the Dirac operator</em>, Comm. Math. Phys. Volume 158, Number 2 (1993), 241-266 (<a href='https://projecteuclid.org/euclid.cmp/1104254240'>euclid:cmp/1104254240</a>)</p>
         1025 </li>
         1026 </ul>
         1027 
         1028 <p>and more generally on <a class='existingWikiWord' href='/nlab/show/moduli+space'>moduli spaces</a>:</p>
         1029 
         1030 <ul>
         1031 <li><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Stability phenomena in the topology of moduli spaces</em> (<a href='https://arxiv.org/abs/0908.1938'>arXiv:0908.1938</a>)</li>
         1032 </ul>
         1033 
         1034 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>      </div>
         1035     </content>
         1036   </entry>
         1037   <entry>
         1038     <title type="html">Gunnar Carlsson</title>
         1039     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Gunnar+Carlsson"/>
         1040     <updated>2021-07-02T08:57:51Z</updated>
         1041     <published>2014-04-13T09:19:17Z</published>
         1042     <id>tag:ncatlab.org,2014-04-13:nLab,Gunnar+Carlsson</id>
         1043     <author>
         1044       <name>Urs Schreiber</name>
         1045     </author>
         1046     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Gunnar+Carlsson">
         1047       <div xmlns="http://www.w3.org/1999/xhtml">
         1048 <ul>
         1049 <li><a href='http://math.stanford.edu/~gunnar/'>webpage</a></li>
         1050 </ul>
         1051 
         1052 <h2 id='selected_writings'>Selected writings</h2>
         1053 
         1054 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p>
         1055 
         1056 <ul>
         1057 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</li>
         1058 </ul>
         1059 
         1060 <p>On <a class='existingWikiWord' href='/nlab/show/topological+data+analysis'>topological data analysis</a>:</p>
         1061 
         1062 <ul>
         1063 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Topology and data</em>, Bull. Amer. Math. Soc. 46 (2009), 255-308 (<a href='https://doi.org/10.1090/S0273-0979-09-01249-X'>doi:10.1090/S0273-0979-09-01249-X</a>)</li>
         1064 </ul>
         1065 
         1066 <p>On <a class='existingWikiWord' href='/nlab/show/persistent+homology'>persistent homology</a>:</p>
         1067 
         1068 <ul>
         1069 <li>
         1070 <p>A. Zomorodian, <a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Computing persistent homology</em>, Discrete Comput. Geom. <strong>33</strong>, 249–274 (2005)</p>
         1071 </li>
         1072 
         1073 <li>
         1074 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, V. de Silva, <em>Zigzag persistence</em>, <a href='http://arxiv.org/abs/0812.0197'>arXiv:0812.0197</a></p>
         1075 </li>
         1076 
         1077 <li>
         1078 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Persistent Homology and Applied Homotopy Theory</em>, in: <a class='existingWikiWord' href='/nlab/show/Handbook+of+Homotopy+Theory'>Handbook of Homotopy Theory</a>, CRC Press, 2019 (<a href='https://arxiv.org/abs/2004.00738'>arXiv:2004.00738</a>)</p>
         1079 </li>
         1080 </ul>
         1081 
         1082 <h2 id='related_lab_entries'>Related <math class='maruku-mathml' display='inline' id='mathml_2134ce935eca0d191efd191c47bb046d957cb8f1_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>Lab entries</h2>
         1083 
         1084 <ul>
         1085 <li>
         1086 <p><a class='existingWikiWord' href='/nlab/show/equivariant+stable+homotopy+theory'>equivariant stable homotopy theory</a></p>
         1087 </li>
         1088 
         1089 <li>
         1090 <p><a class='existingWikiWord' href='/nlab/show/Segal-Carlsson+completion+theorem'>Segal conjecture</a>, <a class='existingWikiWord' href='/nlab/show/Sullivan+conjecture'>Sullivan conjecture</a></p>
         1091 
         1092 <p><a class='existingWikiWord' href='/nlab/show/Burnside+ring'>Burnside ring</a>, <a class='existingWikiWord' href='/nlab/show/stable+cohomotopy'>stable cohomotopy</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+stable+cohomotopy'>equivariant stable cohomotopy</a></p>
         1093 </li>
         1094 
         1095 <li>
         1096 <p><a class='existingWikiWord' href='/nlab/show/persistent+homology'>persistent homology</a></p>
         1097 </li>
         1098 </ul>
         1099 
         1100 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>
         1101 
         1102 <p>
         1103 </p>      </div>
         1104     </content>
         1105   </entry>
         1106   <entry>
         1107     <title type="html">Doug Ravenel</title>
         1108     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Doug+Ravenel"/>
         1109     <updated>2021-07-02T08:31:03Z</updated>
         1110     <published>2012-08-14T17:36:28Z</published>
         1111     <id>tag:ncatlab.org,2012-08-14:nLab,Doug+Ravenel</id>
         1112     <author>
         1113       <name>Urs Schreiber</name>
         1114     </author>
         1115     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Doug+Ravenel">
         1116       <div xmlns="http://www.w3.org/1999/xhtml">
         1117 <ul>
         1118 <li>
         1119 <p><a href='http://www.math.rochester.edu/people/faculty/doug/'>webpage</a></p>
         1120 </li>
         1121 
         1122 <li>
         1123 <p><a class='existingWikiWord' href='/nlab/show/Michael+Hopkins'>Michael Hopkins</a>, <em>The mathematical work of Douglas C. Ravenel</em>, Homology Homotopy Appl. Volume 10, Number 3 (2008), 1-13 (<a href='https://projecteuclid.org/euclid.hha/1251832464'>euclid:hha/1251832464</a>)</p>
         1124 </li>
         1125 </ul>
         1126 
         1127 <h2 id='selected_writings'>Selected writings</h2>
         1128 
         1129 <p>On the <a class='existingWikiWord' href='/nlab/show/Hopf+algebra'>Hopf ring</a> of <a class='existingWikiWord' href='/nlab/show/MU'>MU</a>:</p>
         1130 
         1131 <ul>
         1132 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <a class='existingWikiWord' href='/nlab/show/W.+Stephen+Wilson'>W. Stephen Wilson</a>, <em>The Hopf ring for complex cobordism</em>, Bull. Amer. Math. Soc. 80 (6) 1185 - 1189, November 1974 (<a href='https://doi.org/10.1016/0022-4049(77)90070-6'>doi:10.1016/0022-4049(77)90070-6</a>, <a href='https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-80/issue-6/The-Hopf-ring-for-complex-cobordism/bams/1183536024.full?tab=ArticleLink'>euclid</a>, <a href='https://people.math.rochester.edu/faculty/doug/mypapers/hopfring.pdf'>pdf</a>)</li>
         1133 </ul>
         1134 
         1135 <p>On the <a class='existingWikiWord' href='/nlab/show/Adams%E2%80%93Novikov+spectral+sequence'>Adams-Novikov spectral sequence</a>:</p>
         1136 
         1137 <ul>
         1138 <li id='Ravenel78'><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>A Novice’s guide to the Adams-Novikov spectral sequence</em>, in: <a class='existingWikiWord' href='/nlab/show/Michael+Barratt'>Michael Barratt</a>, <a class='existingWikiWord' href='/nlab/show/Mark+Mahowald'>Mark Mahowald</a> (eds.) <em>Geometric Applications of Homotopy Theory II</em>. Lecture Notes in Mathematics, vol 658, Springer 1978 (<a href='https://doi.org/10.1007/BFb0068728'>doi:10.1007/BFb0068728</a>, <a href='https://people.math.rochester.edu/faculty/doug/mypapers/Novice.pdf'>pdf</a>)</li>
         1139 </ul>
         1140 
         1141 <p>On <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a> and introducing <a class='existingWikiWord' href='/nlab/show/Ravenel%27s+spectrum'>Ravenel&#39;s spectra</a> and <a class='existingWikiWord' href='/nlab/show/Ravenel%27s+conjectures'>Ravenel&#39;s conjectures</a>:</p>
         1142 
         1143 <ul>
         1144 <li id='Ravenel84'><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>Localization with Respect to Certain Periodic Homology Theories</em>, American Journal of Mathematics Vol. 106, No. 2 (Apr., 1984), pp. 351-414 (<a href='https://doi.org/10.2307/2374308'>doi:10.2307/2374308</a>, <a href='https://www.jstor.org/stable/2374308'>jstor:2374308</a>)</li>
         1145 </ul>
         1146 
         1147 <p>On <a class='existingWikiWord' href='/nlab/show/homotopy+groups+of+spheres'>stable homotopy groups of spheres</a> and <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a>:</p>
         1148 
         1149 <ul>
         1150 <li id='MahowaldRavenel87'><a class='existingWikiWord' href='/nlab/show/Mark+Mahowald'>Mark Mahowald</a>, <a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Doug Ravenel</a>, <em>Towards a Global Understanding of the Homotopy Groups of Spheres</em>, in: <a class='existingWikiWord' href='/nlab/show/Samuel+Gitler'>Samuel Gitler</a> (ed.): <em>The Lefschetz Centennial Conference: Proceedings on Algebraic Topology II</em>, Contemporary Mathematics volume 58, AMS 1987 (<a href='https://bookstore.ams.org/conm-58-2'>ISBN:978-0-8218-5063-3</a>, <a href='http://www.math.rochester.edu/people/faculty/doug/mypapers/global.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/MahowaldRavenelHomotopyGroupsOfSpheres.pdf' title='pdf'>pdf</a>)</li>
         1151 </ul>
         1152 
         1153 <p>On <a class='existingWikiWord' href='/nlab/show/elliptic+genus'>elliptic genera</a>:</p>
         1154 
         1155 <ul>
         1156 <li id='LandweberRavenelStong93'><a class='existingWikiWord' href='/nlab/show/Peter+Landweber'>Peter Landweber</a>, <a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <a class='existingWikiWord' href='/nlab/show/Robert+Stong'>Robert Stong</a>, <em>Periodic cohomology theories defined by elliptic curves</em>, in <a class='existingWikiWord' href='/nlab/show/Haynes+Miller'>Haynes Miller</a> et al (eds.), <em>The Cech centennial: A conference on homotopy theory</em>, June 1993, AMS (1995) (<a href='http://www.math.sciences.univ-nantes.fr/~hossein/GdT-Elliptique/Landweber-Ravenel-Stong.pdf'>pdf</a>)</li>
         1157 </ul>
         1158 
         1159 <p>On <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/MU'>complex cobordism cohomology</a> and <a class='existingWikiWord' href='/nlab/show/homotopy+groups+of+spheres'>stable homotopy groups of spheres</a>,:</p>
         1160 
         1161 <ul>
         1162 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Doug Ravenel</a>, <em><a class='existingWikiWord' href='/nlab/show/Complex+cobordism+and+stable+homotopy+groups+of+spheres'>Complex cobordism and stable homotopy groups of spheres</a></em>, Academic Press Orland (1986) reprinted as: AMS Chelsea Publishing, Volume 347, 2004 (<a href='https://bookstore.ams.org/chel-347-h'>ISBN:978-0-8218-2967-7</a>, <a href='http://www.math.rochester.edu/people/faculty/doug/mu.html'>webpage</a>, <a href='https://web.math.rochester.edu/people/faculty/doug/mybooks/ravenel.pdf'>pdf</a>)</li>
         1163 </ul>
         1164 
         1165 <p>On <a class='existingWikiWord' href='/nlab/show/iterated+loop+space'>iterated loop spaces</a> of <a class='existingWikiWord' href='/nlab/show/sphere'>spheres</a> and <a class='existingWikiWord' href='/nlab/show/stable+splitting+of+mapping+spaces'>stable splitting of mapping spaces</a>:</p>
         1166 
         1167 <ul>
         1168 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>What we still don’t understand about loop spaces of spheres</em>, Contemporary Mathematics 1998 (<a href='https://people.math.rochester.edu/faculty/doug/mypapers/loop.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Ravenel_LoopSpacesOfSpheres.pdf' title='pdf'>pdf</a>)</li>
         1169 </ul>
         1170 
         1171 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>
         1172 
         1173 <p>
         1174 </p>      </div>
         1175     </content>
         1176   </entry>
         1177   <entry>
         1178     <title type="html">stable splitting of mapping spaces</title>
         1179     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/stable+splitting+of+mapping+spaces"/>
         1180     <updated>2021-07-02T08:30:06Z</updated>
         1181     <published>2018-10-28T12:06:36Z</published>
         1182     <id>tag:ncatlab.org,2018-10-28:nLab,stable+splitting+of+mapping+spaces</id>
         1183     <author>
         1184       <name>Urs Schreiber</name>
         1185     </author>
         1186     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/stable+splitting+of+mapping+spaces">
         1187       <div xmlns="http://www.w3.org/1999/xhtml">
         1188 <div class='rightHandSide'>
         1189 <div class='toc clickDown' tabindex='0'>
         1190 <h3 id='context'>Context</h3>
         1191 
         1192 <h4 id='stable_homotopy_theory'>Stable Homotopy theory</h4>
         1193 
         1194 <div class='hide'>
         1195 <p><strong><a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theory</a></strong></p>
         1196 
         1197 <ul>
         1198 <li><a class='existingWikiWord' href='/nlab/show/homological+algebra'>homological algebra</a>, <a class='existingWikiWord' href='/nlab/show/higher+algebra'>higher algebra</a></li>
         1199 </ul>
         1200 
         1201 <p><em><a class='existingWikiWord' href='/nlab/show/Introduction+to+Stable+Homotopy+Theory'>Introduction</a></em></p>
         1202 
         1203 <h1 id='ingredients'>Ingredients</h1>
         1204 
         1205 <ul>
         1206 <li><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a></li>
         1207 </ul>
         1208 
         1209 <h1 id='contents'>Contents</h1>
         1210 
         1211 <ul>
         1212 <li>
         1213 <p><a class='existingWikiWord' href='/nlab/show/loop+space+object'>loop space object</a></p>
         1214 </li>
         1215 
         1216 <li>
         1217 <p><a class='existingWikiWord' href='/nlab/show/suspension+object'>suspension object</a></p>
         1218 </li>
         1219 
         1220 <li>
         1221 <p><a class='existingWikiWord' href='/nlab/show/looping'>looping and delooping</a></p>
         1222 </li>
         1223 
         1224 <li>
         1225 <p><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category'>stable (∞,1)-category</a></p>
         1226 
         1227 <ul>
         1228 <li>
         1229 <p><a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a></p>
         1230 
         1231 <ul>
         1232 <li><a class='existingWikiWord' href='/nlab/show/spectrum+object'>spectrum object</a></li>
         1233 </ul>
         1234 </li>
         1235 
         1236 <li>
         1237 <p><a class='existingWikiWord' href='/nlab/show/stable+derivator'>stable derivator</a></p>
         1238 </li>
         1239 
         1240 <li>
         1241 <p><a class='existingWikiWord' href='/nlab/show/triangulated+category'>triangulated category</a></p>
         1242 </li>
         1243 </ul>
         1244 </li>
         1245 
         1246 <li>
         1247 <p><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category+of+spectra'>stable (∞,1)-category of spectra</a></p>
         1248 
         1249 <ul>
         1250 <li>
         1251 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p>
         1252 </li>
         1253 
         1254 <li>
         1255 <p><a class='existingWikiWord' href='/nlab/show/stable+homotopy+category'>stable homotopy category</a></p>
         1256 </li>
         1257 </ul>
         1258 </li>
         1259 
         1260 <li>
         1261 <p><a class='existingWikiWord' href='/nlab/show/smash+product+of+spectra'>smash product of spectra</a></p>
         1262 
         1263 <ul>
         1264 <li>
         1265 <p><a class='existingWikiWord' href='/nlab/show/symmetric+smash+product+of+spectra'>symmetric smash product of spectra</a></p>
         1266 </li>
         1267 
         1268 <li>
         1269 <p><a class='existingWikiWord' href='/nlab/show/Spanier-Whitehead+duality'>Spanier-Whitehead duality</a></p>
         1270 </li>
         1271 
         1272 <li>
         1273 <p><a class='existingWikiWord' href='/nlab/show/A-infinity-ring'>A-∞ ring</a></p>
         1274 </li>
         1275 
         1276 <li>
         1277 <p><a class='existingWikiWord' href='/nlab/show/E-infinity-ring'>E-∞ ring</a></p>
         1278 </li>
         1279 </ul>
         1280 </li>
         1281 </ul>
         1282 <div>
         1283 <p>
         1284   <a href='/nlab/edit/stable+homotopy+theory+-+contents'>Edit this sidebar</a>
         1285 </p>
         1286 </div></div>
         1287 
         1288 <h4 id='goodwillie_calculus'>Goodwillie calculus</h4>
         1289 
         1290 <div class='hide'>
         1291 <p><strong><a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a></strong> – approximation of <a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theories</a> by <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theories</a></p>
         1292 
         1293 <ul>
         1294 <li>
         1295 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie-differentiable+%28infinity%2C1%29-category'>Goodwillie-differentiable (∞,1)-category</a></p>
         1296 </li>
         1297 
         1298 <li>
         1299 <p><a class='existingWikiWord' href='/nlab/show/excisive+%28%E2%88%9E%2C1%29-functor'>excisive (∞,1)-functor</a></p>
         1300 
         1301 <ul>
         1302 <li>
         1303 <p><a class='existingWikiWord' href='/nlab/show/spectrum+object'>spectrum object</a>, <a class='existingWikiWord' href='/nlab/show/parametrized+spectrum'>parameterized spectrum</a>,</p>
         1304 </li>
         1305 
         1306 <li>
         1307 <p><a class='existingWikiWord' href='/nlab/show/tangent+%28infinity%2C1%29-category'>tangent (∞,1)-category</a>, <a class='existingWikiWord' href='/nlab/show/tangent+%28infinity%2C1%29-category'>tangent (∞,1)-topos</a></p>
         1308 </li>
         1309 </ul>
         1310 </li>
         1311 
         1312 <li>
         1313 <p><a class='existingWikiWord' href='/nlab/show/n-excisive+%28%E2%88%9E%2C1%29-functor'>n-excisive (∞,1)-functor</a></p>
         1314 
         1315 <ul>
         1316 <li>
         1317 <p><a class='existingWikiWord' href='/nlab/show/jet+%28infinity%2C1%29-category'>jet (∞,1)-category</a></p>
         1318 </li>
         1319 
         1320 <li>
         1321 <p><a class='existingWikiWord' href='/nlab/show/polynomial+%28%E2%88%9E%2C1%29-functor'>polynomial (∞,1)-functor</a>, <a class='existingWikiWord' href='/nlab/show/n-reduced+%28%E2%88%9E%2C1%29-functor'>n-reduced (∞,1)-functor</a>, <a class='existingWikiWord' href='/nlab/show/n-homogeneous+%28%E2%88%9E%2C1%29-functor'>n-homogeneous (∞,1)-functor</a></p>
         1322 </li>
         1323 </ul>
         1324 </li>
         1325 
         1326 <li>
         1327 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a></p>
         1328 
         1329 <ul>
         1330 <li>
         1331 <p><a class='existingWikiWord' href='/nlab/show/analytic+%28%E2%88%9E%2C1%29-functor'>analytic (∞,1)-functor</a></p>
         1332 </li>
         1333 
         1334 <li>
         1335 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie+spectral+sequence'>Goodwillie spectral sequence</a></p>
         1336 </li>
         1337 </ul>
         1338 </li>
         1339 </ul>
         1340 </div>
         1341 
         1342 <h4 id='mapping_space'>Mapping space</h4>
         1343 
         1344 <div class='hide'>
         1345 <p><strong><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a></strong></p>
         1346 
         1347 <h3 id='general_abstract'>General abstract</h3>
         1348 
         1349 <ul>
         1350 <li>
         1351 <p><a class='existingWikiWord' href='/nlab/show/hom-set'>hom-set</a>, <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a>, <a class='existingWikiWord' href='/nlab/show/internal+hom'>internal hom</a>, <a class='existingWikiWord' href='/nlab/show/exponential+object'>exponential object</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>derived hom-space</a></p>
         1352 </li>
         1353 
         1354 <li>
         1355 <p><a class='existingWikiWord' href='/nlab/show/loop+space+object'>loop space object</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+space+object'>free loop space object</a>, <a class='existingWikiWord' href='/nlab/show/derived+loop+space'>derived loop space</a></p>
         1356 </li>
         1357 </ul>
         1358 
         1359 <h3 id='topology'>Topology</h3>
         1360 
         1361 <ul>
         1362 <li>
         1363 <p><a class='existingWikiWord' href='/nlab/show/topology+of+mapping+spaces'>topology of mapping spaces</a></p>
         1364 
         1365 <ul>
         1366 <li><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>compact-open topology</a></li>
         1367 </ul>
         1368 </li>
         1369 
         1370 <li>
         1371 <p><a class='existingWikiWord' href='/nlab/show/evaluation+fibration+of+mapping+spaces'>evaluation fibration of mapping spaces</a></p>
         1372 </li>
         1373 
         1374 <li>
         1375 <p><a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a></p>
         1376 </li>
         1377 </ul>
         1378 
         1379 <h3 id='differential_topology'>Differential topology</h3>
         1380 
         1381 <ul>
         1382 <li>
         1383 <p><a class='existingWikiWord' href='/nlab/show/differential+topology+of+mapping+spaces'>differential topology of mapping spaces</a></p>
         1384 
         1385 <ul>
         1386 <li><a class='existingWikiWord' href='/nlab/show/C-infinity+topology'>C-k topology</a></li>
         1387 </ul>
         1388 </li>
         1389 
         1390 <li>
         1391 <p><a class='existingWikiWord' href='/nlab/show/manifold+structure+of+mapping+spaces'>manifold structure of mapping spaces</a></p>
         1392 
         1393 <ul>
         1394 <li><a class='existingWikiWord' href='/nlab/show/tangent+spaces+of+mapping+spaces'>tangent spaces of mapping spaces</a></li>
         1395 </ul>
         1396 </li>
         1397 
         1398 <li>
         1399 <p><a class='existingWikiWord' href='/nlab/show/smooth+loop+space'>smooth loop space</a></p>
         1400 </li>
         1401 </ul>
         1402 
         1403 <h3 id='stable_homotopy_theory_2'>Stable homotopy theory</h3>
         1404 
         1405 <ul>
         1406 <li><a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a></li>
         1407 </ul>
         1408 <div>
         1409 <p>
         1410   <a href='/nlab/edit/mapping+space+-+contents'>Edit this sidebar</a>
         1411 </p>
         1412 </div></div>
         1413 </div>
         1414 </div>
         1415 
         1416 <h1 id='contents_2'>Contents</h1>
         1417 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#Definition'>Definition</a></li><li><a href='#Statements'>Statements</a><ul><li><a href='#prelude_equivalence_to_the_infinite_configuration_space'>Prelude: Equivalence to the infinite configuration space</a></li><li><a href='#StableSplittings'>Stable splitting of mapping spaces</a></li><li><a href='#InTermsOfGoodwillieTowers'>In terms of Goodwillie-Taylor towers</a></li><li><a href='#lax_closed_structure_on_'>Lax closed structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math></a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div>
         1418 <h2 id='idea'>Idea</h2>
         1419 
         1420 <p>The <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a>/<a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma^\infty  Maps(X,A)</annotation></semantics></math> of <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping spaces</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(X,A)</annotation></semantics></math> between suitable <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complexes</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>,</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>X, A</annotation></semantics></math> happens to decompose as a <a class='existingWikiWord' href='/nlab/show/direct+sum'>direct sum</a> of <a class='existingWikiWord' href='/nlab/show/spectrum'>spectra</a> (a <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sum</a>) in a useful way, related to the expression of the <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie derivatives</a> of the functor <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(X,-)</annotation></semantics></math> and often expressible in terms of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>.</p>
         1421 
         1422 <h2 id='Definition'>Definition</h2>
         1423 
         1424 <p>The stable splitting of mapping spaces discussed <a href='#StableSplittings'>below</a> have summands given by <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a>, or generalizations thereof. To be self-contained, we recall the relevant definitions here.</p>
         1425 
         1426 <p>The following Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a> is not the most general definition of <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a> that one may consider in this context, instead it is streamlined to certain applications. See Remark <a class='maruku-ref' href='#ComparisonToNotationInLiterature'>1</a> below for comparison of notation used here to notation used elsewhere.</p>
         1427 
         1428 <div class='num_defn' id='ConfigurationSpacesOfnPoints'>
         1429 <h6 id='definition_2'>Definition</h6>
         1430 
         1431 <p><strong>(<a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a>)</strong></p>
         1432 
         1433 <p>Let <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, possibly with <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a>.</p>
         1434 
         1435 <p>For <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> distinguishable points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> disappearing at the boundary</em> is the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a></p>
         1436 <div class='maruku-equation' id='eq:DistinguishableConfigurationSpaceJustForX'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mi mathvariant='normal'>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1437     
         1438     \mathrm{Conf}^{ord}_{n}(X)
         1439     \;\coloneqq\;
         1440       \big(
         1441         X^n \setminus \mathbf{\Delta}_X^n
         1442       \big)
         1443       / \partial(X^n)
         1444 
         1445 </annotation></semantics></math></div>
         1446 <p>which is the <a class='existingWikiWord' href='/nlab/show/complement'>complement</a> of the <a class='existingWikiWord' href='/nlab/show/fat+diagonal'>fat diagonal</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo>≔</mo><mo stretchy='false'>{</mo><mo stretchy='false'>(</mo><msup><mi>x</mi> <mi>i</mi></msup><mo stretchy='false'>)</mo><mo>∈</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>|</mo><munder><mo>∃</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></munder><mo stretchy='false'>(</mo><msup><mi>x</mi> <mi>i</mi></msup><mo>=</mo><msup><mi>x</mi> <mi>j</mi></msup><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\mathbf{\Delta}_X^n \coloneqq \{(x^i) \in X^n | \underset{i,j}{\exists} (x^i = x^j) \}</annotation></semantics></math> inside the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/product+topological+space'>product space</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> with itself, followed by <a class='existingWikiWord' href='/nlab/show/quotient+space'>collapsing</a> any configurations with elements on the <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> to a common <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>base point</a>.</p>
         1447 
         1448 <p>Then the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> in-distinguishable points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is the further <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological space</a></em></p>
         1449 <div class='maruku-equation' id='eq:ConfigurationSpaceJustForX'><span class='maruku-eq-number'>(2)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>Σ</mi> <mi>n</mi></msub><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'>
         1450     
         1451     \mathrm{Conf}_{n}(X)
         1452     \;\coloneqq\;
         1453     Conf_n^{ord}(X)/\Sigma_n
         1454     \;=\;
         1455     \Big(
         1456       \big(
         1457         X^n \setminus \mathbf{\Delta}_X^n
         1458       \big)
         1459       / \partial(X^n)
         1460     \Big)
         1461     /\Sigma(n)
         1462     \,,
         1463   
         1464 </annotation></semantics></math></div>
         1465 <p>where <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma(n)</annotation></semantics></math> denotes the evident <a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a> by <a class='existingWikiWord' href='/nlab/show/permutation'>permutation</a> of factors of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> inside <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>X</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>X^n</annotation></semantics></math>.</p>
         1466 
         1467 <p>More generally, let <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> be another <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, possibly with <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a>. For <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> vanishing at the boundary and distinct as points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></em> is the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a></p>
         1468 <div class='maruku-equation' id='eq:ConfigurationSpaceWithXAndY'><span class='maruku-eq-number'>(3)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1469     
         1470     \mathrm{Conf}_{n}(X,Y)
         1471     \;\coloneqq\;
         1472     \Big(
         1473     \big(
         1474       (
         1475         X^n \setminus \mathbf{\Delta}_X^n
         1476       )
         1477       \times
         1478       Y^n
         1479     \big)
         1480     / \partial(X^n \times Y^n)
         1481     \Big)
         1482     /\Sigma(n)
         1483   
         1484 </annotation></semantics></math></div>
         1485 <p>where now <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma(n)</annotation></semantics></math> denotes the evident <a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a> by <a class='existingWikiWord' href='/nlab/show/permutation'>permutation</a> of factors of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> inside <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo>≃</mo><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>X^n \times Y^n \simeq (X \times Y)^n</annotation></semantics></math>.</p>
         1486 
         1487 <p>This more general definition reduces to the previous case for <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><mo>*</mo><mo>≔</mo><msup><mi>ℝ</mi> <mn>0</mn></msup></mrow><annotation encoding='application/x-tex'>Y = \ast \coloneqq \mathbb{R}^0</annotation></semantics></math> being the point:</p>
         1488 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1489     \mathrm{Conf}_n(X)
         1490     \;=\;
         1491     \mathrm{Conf}_n(X,\ast)
         1492     \,.
         1493   
         1494 </annotation></semantics></math></div>
         1495 <p>Finally the <em><strong>configuration space of an arbitrary number of points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> vanishing at the boundary and distinct already as points of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></em> is the <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological space</a> of the <a class='existingWikiWord' href='/nlab/show/disjoint+union+topological+space'>disjoint union space</a></p>
         1496 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><munder><mo>⊔</mo><mrow><mi>n</mi><mo>∈</mo><mi>𝕟</mi></mrow></munder><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>k</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∼</mo></mrow><annotation encoding='application/x-tex'>
         1497   Conf\left( X, Y\right)
         1498   \;\coloneqq\;
         1499   \left(
         1500   \underset{n \in \mathbb{n}}{\sqcup}
         1501       \big(
         1502       (
         1503         X^n \setminus \mathbf{\Delta}_X^n
         1504       )
         1505       \times
         1506       Y^k
         1507     \big)
         1508     /\Sigma(n)
         1509   \right)/\sim
         1510 
         1511 </annotation></semantics></math></div>
         1512 <p>by the <a class='existingWikiWord' href='/nlab/show/equivalence+relation'>equivalence relation</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∼</mo></mrow><annotation encoding='application/x-tex'>\sim</annotation></semantics></math> given by</p>
         1513 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>y</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mi>⋯</mi><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>y</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>y</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mo>∼</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>y</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mi>⋯</mi><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>y</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>⇔</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>y</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mo>∈</mo><mo>∂</mo><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1514   \big(
         1515     (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}), (x_n, y_n)
         1516   \big)
         1517   \;\sim\;
         1518   \big(
         1519     (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})
         1520   \big)
         1521   \;\;\;\; \Leftrightarrow
         1522   \;\;\;\; (x_n, y_n) \in \partial (X \times Y)
         1523   \,.
         1524 
         1525 </annotation></semantics></math></div>
         1526 <p>This is naturally a <a class='existingWikiWord' href='/nlab/show/filtered+topological+space'>filtered topological space</a> with filter stages</p>
         1527 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mrow><mo>≤</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><munder><mo>⊔</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mi>⋯</mi><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>k</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>k</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>k</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∼</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1528   Conf_{\leq n}\left( X, Y\right)
         1529   \;\coloneqq\;
         1530   \left(
         1531   \underset{k \in \{1, \cdots, n\}}{\sqcup}
         1532       \big(
         1533       (
         1534         X^k \setminus \mathbf{\Delta}_X^k
         1535       )
         1536       \times
         1537       Y^k
         1538     \big)
         1539     /\Sigma(k)
         1540   \right)/\sim
         1541   \,.
         1542 
         1543 </annotation></semantics></math></div>
         1544 <p>The corresponding <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological spaces</a> of the filter stages reproduces the above configuration spaces of a fixed number of points:</p>
         1545 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msub><mi>Conf</mi> <mrow><mo>≤</mo><mi>n</mi></mrow></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>Conf</mi> <mrow><mo>≤</mo><mo stretchy='false'>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1546   Conf_n(X,Y)
         1547   \;\simeq\;
         1548   Conf_{\leq n}(X,Y) / Conf_{\leq (n-1)}(X,Y)
         1549   \,.
         1550 
         1551 </annotation></semantics></math></div></div>
         1552 
         1553 <div class='num_remark' id='ComparisonToNotationInLiterature'>
         1554 <h6 id='remark'>Remark</h6>
         1555 
         1556 <p><strong>(comparison to notation in the literature)</strong></p>
         1557 
         1558 <p>The above Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a> is less general but possibly more suggestive than what is considered for instance in <a href='#Boedigheimer87'>Bödigheimer 87</a>. Concretely, we have the following translations of notation:</p>
         1559 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mtext> here: </mtext></mtd> <mtd></mtd> <mtd><mrow><mtable><mtr><mtd><mtext> Segal 73,</mtext></mtd></mtr> <mtr><mtd><mtext> Snaith 74</mtext><mo>:</mo></mtd></mtr></mtable></mrow></mtd> <mtd></mtd> <mtd><mtext> Bödigheimer 87: </mtext></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><mi>C</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>)</mo></mrow></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>F</mi> <mi>n</mi></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><msup><mi>S</mi> <mn>0</mn></msup><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>F</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><msup><mi>S</mi> <mn>0</mn></msup><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><msup><mi>S</mi> <mn>0</mn></msup><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>F</mi> <mi>n</mi></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>F</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>;</mo><msup><mi>S</mi> <mn>0</mn></msup><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         1560     \array{
         1561       \text{ here: }
         1562         &amp;&amp; 
         1563       \array{ \text{ Segal 73,} \\ \text{ Snaith 74}: }
         1564         &amp;&amp;
         1565       \text{ Bödigheimer 87: }
         1566       \\
         1567       \\
         1568       Conf(\mathbb{R}^d,Y) 
         1569         &amp;=&amp; 
         1570       C_d( Y/\partial Y )
         1571         &amp;=&amp;
         1572       C( \mathbb{R}^d, \emptyset; Y )  
         1573       \\
         1574       \mathrm{Conf}_n\left( \mathbb{R}^d \right)
         1575       &amp; = &amp;
         1576       F_n C_d( S^0 ) / F_{n-1} C_d( S^0 )
         1577       &amp; = &amp;
         1578       D_n\left( \mathbb{R}^d, \emptyset; S^0  \right)
         1579       \\
         1580       \mathrm{Conf}_n\left( \mathbb{R}^d, Y \right)
         1581       &amp; = &amp;
         1582       F_n C_d( Y/\partial Y ) / F_{n-1} C_d( Y/\partial Y )
         1583       &amp; = &amp;
         1584       D_n\left( \mathbb{R}^d, \emptyset; Y/\partial Y  \right)
         1585       \\
         1586       \mathrm{Conf}_n( X ) &amp;&amp; &amp;=&amp; D_n\left( X, \partial X; S^0  \right) 
         1587       \\
         1588       \mathrm{Conf}_n( X, Y  ) &amp;&amp; &amp;=&amp; D_n\left( X, \partial X; Y/\partial Y  \right)
         1589     }
         1590   
         1591 </annotation></semantics></math></div>
         1592 <p>Notice here that when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> happens to have <a class='existingWikiWord' href='/nlab/show/empty+space'>empty</a> <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∂</mo><mi>Y</mi><mo>=</mo><mi>∅</mi></mrow><annotation encoding='application/x-tex'>\partial Y = \emptyset</annotation></semantics></math>, then the <a class='existingWikiWord' href='/nlab/show/pushout'>pushout</a></p>
         1593 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>≔</mo><mi>Y</mi><munder><mo>⊔</mo><mrow><mo>∂</mo><mi>Y</mi></mrow></munder><mo>*</mo></mrow><annotation encoding='application/x-tex'>
         1594   Y / \partial Y \coloneqq Y \underset{\partial Y}{\sqcup} \ast
         1595 
         1596 </annotation></semantics></math></div>
         1597 <p>is <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> with a <a href='pointed+topological+space#ForgettingAndAdjoiningBasepoints'>disjoint basepoint attached</a>. Notably for <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>Y =\ast</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/point+space'>point space</a>, we have that</p>
         1598 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo>*</mo><mo>=</mo><msup><mi>S</mi> <mn>0</mn></msup></mrow><annotation encoding='application/x-tex'>
         1599   \ast/\partial \ast = S^0
         1600 
         1601 </annotation></semantics></math></div>
         1602 <p>is the <a class='existingWikiWord' href='/nlab/show/0-sphere'>0-sphere</a>.</p>
         1603 </div>
         1604 
         1605 <h2 id='Statements'>Statements</h2>
         1606 
         1607 <h3 id='prelude_equivalence_to_the_infinite_configuration_space'>Prelude: Equivalence to the infinite configuration space</h3>
         1608 
         1609 <p>First recall the following equivalence already before <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a>:</p>
         1610 
         1611 <div class='num_prop' id='ScanningMapEquivalenceOverCartesianSpace'>
         1612 <h6 id='proposition'>Proposition</h6>
         1613 
         1614 <p>For</p>
         1615 
         1616 <ol>
         1617 <li>
         1618 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>d \in \mathbb{N}</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>d \geq 1</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/natural+number'>natural number</a> with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> denoting the <a class='existingWikiWord' href='/nlab/show/cartesian+space'>Cartesian space</a>/<a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a> of that <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a>,</p>
         1619 </li>
         1620 
         1621 <li>
         1622 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, with <a class='existingWikiWord' href='/nlab/show/inhabited+set'>non-empty</a> <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a> so that <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/connected+space'>connected</a>,</p>
         1623 </li>
         1624 </ol>
         1625 
         1626 <p>the <a class='existingWikiWord' href='/nlab/show/cohomotopy+charge+map'>scanning map</a> constitutes a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a></p>
         1627 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mover><mo>⟶</mo><mi>scan</mi></mover><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1628   Conf\left( 
         1629     \mathbb{R}^d, Y
         1630   \right)
         1631   \overset{scan}{\longrightarrow}
         1632   \Omega^d \Sigma^d (Y/\partial Y)
         1633 
         1634 </annotation></semantics></math></div>
         1635 <p>between</p>
         1636 
         1637 <ol>
         1638 <li>
         1639 <p>the configuration space of arbitrary points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math> vanishing at the boundary (Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>)</p>
         1640 </li>
         1641 
         1642 <li>
         1643 <p>the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a> of the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/reduced+suspension'>reduced suspension</a> of the <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient space</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> (regarded as a <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> with basepoint <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[\partial Y]</annotation></semantics></math>).</p>
         1644 </li>
         1645 </ol>
         1646 
         1647 <p>In particular when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><msup><mi>𝔻</mi> <mi>k</mi></msup></mrow><annotation encoding='application/x-tex'>Y = \mathbb{D}^k</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/ball'>closed ball</a> of <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>k \geq 1</annotation></semantics></math> this gives a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a></p>
         1648 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>𝔻</mi> <mi>k</mi></msup><mo>)</mo></mrow><mover><mo>⟶</mo><mi>scan</mi></mover><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>S</mi> <mrow><mi>d</mi><mo>+</mo><mi>k</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>
         1649   Conf\left( 
         1650     \mathbb{R}^d, \mathbb{D}^k
         1651   \right)
         1652   \overset{scan}{\longrightarrow}
         1653   \Omega^d S^{ d + k }
         1654 
         1655 </annotation></semantics></math></div>
         1656 <p>with the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a> of the <a class='existingWikiWord' href='/nlab/show/sphere'>(d+k)-sphere</a>.</p>
         1657 </div>
         1658 
         1659 <p>(<a href='#May72'>May 72, Theorem 2.7</a>, <a href='#Segal73'>Segal 73, Theorem 3</a>)</p>
         1660 
         1661 <h3 id='StableSplittings'>Stable splitting of mapping spaces</h3>
         1662 
         1663 <div class='num_prop' id='StableSplittingOfMappingSpacesOutOfEuclideanSpace'>
         1664 <h6 id='proposition_2'>Proposition</h6>
         1665 
         1666 <p><strong>(<a class='existingWikiWord' href='/nlab/show/stable+splitting+of+mapping+spaces'>stable splitting of mapping spaces</a> out of <a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a>/<a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>)</strong></p>
         1667 
         1668 <p>For</p>
         1669 
         1670 <ol>
         1671 <li>
         1672 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>d \in \mathbb{N}</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>d \geq 1</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/natural+number'>natural number</a> with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> denoting the <a class='existingWikiWord' href='/nlab/show/cartesian+space'>Cartesian space</a>/<a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a> of that <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a>,</p>
         1673 </li>
         1674 
         1675 <li>
         1676 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, with <a class='existingWikiWord' href='/nlab/show/inhabited+set'>non-empty</a> <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a> so that <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/connected+space'>connected</a>,</p>
         1677 </li>
         1678 </ol>
         1679 
         1680 <p>there is a <a class='existingWikiWord' href='/nlab/show/stable+weak+homotopy+equivalence'>stable weak homotopy equivalence</a></p>
         1681 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1682   \Sigma^\infty Conf(\mathbb{R}^d, Y)
         1683   \overset{\simeq}{\longrightarrow}
         1684   \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y)
         1685 
         1686 </annotation></semantics></math></div>
         1687 <p>between</p>
         1688 
         1689 <ol>
         1690 <li>
         1691 <p>the <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space</a> of an arbitrary number of points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math> vanishing at the boundary and distinct already as points of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> (Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>)</p>
         1692 </li>
         1693 
         1694 <li>
         1695 <p>the <a class='existingWikiWord' href='/nlab/show/direct+sum'>direct sum</a> (hence: <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sum</a>) of <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectra</a> of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces</a> of a fixed number of points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math>, vanishing at the boundary and distinct already as points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> (also Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>).</p>
         1696 </li>
         1697 </ol>
         1698 
         1699 <p>Combined with the <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a> of the <a class='existingWikiWord' href='/nlab/show/cohomotopy+charge+map'>scanning map</a> <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> from Prop. <a class='maruku-ref' href='#ScanningMapEquivalenceOverCartesianSpace'>1</a> this yields a <a class='existingWikiWord' href='/nlab/show/stable+weak+homotopy+equivalence'>stable weak homotopy equivalence</a></p>
         1700 <div class='maruku-equation' id='eq:StableSplittingOfMappingSpacesOutOfSphere'><span class='maruku-eq-number'>(4)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><munderover><mo>⟶</mo><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>scan</mi></mrow><mo>≃</mo></munderover><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1701   
         1702   Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y))
         1703   =
         1704   Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y))
         1705   =
         1706   \Omega^d \Sigma^d (Y/\partial Y)
         1707   \underoverset{\Sigma^\infty scan}{\simeq}{\longrightarrow}
         1708   \Sigma^\infty Conf(\mathbb{R}^d, Y)
         1709   \overset{\simeq}{\longrightarrow}
         1710   \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y)
         1711 
         1712 </annotation></semantics></math></div>
         1713 <p>between the latter direct sum and the <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> of the <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a> of pointed <a class='existingWikiWord' href='/nlab/show/continuous+map'>continuous functions</a> from the <a class='existingWikiWord' href='/nlab/show/sphere'>d-sphere</a> to the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/reduced+suspension'>reduced suspension</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math>.</p>
         1714 </div>
         1715 
         1716 <p>(<a href='#Snaith74'>Snaith 74, theorem 1.1</a>, <a href='#Boedigheimer87'>Bödigheimer 87, Example 2</a>)</p>
         1717 
         1718 <p>In fact by <a href='#Boedigheimer87'>Bödigheimer 87, Example 5</a> this equivalence still holds with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> treated on the same footing as <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math>, hence with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(\mathbb{R}^d, Y)</annotation></semantics></math> on the right replaced by <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(\mathbb{R}^d \times Y)</annotation></semantics></math> in the well-adjusted notation of Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>:</p>
         1719 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1720   Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y))
         1721   =
         1722   Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y))
         1723   \overset{\simeq}{\longrightarrow}
         1724   \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d \times Y)
         1725 
         1726 </annotation></semantics></math></div>
         1727 <h3 id='InTermsOfGoodwillieTowers'>In terms of Goodwillie-Taylor towers</h3>
         1728 
         1729 <p>We discuss the interpretation of the above stable splitting of mapping spaces from the point of view of <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a>, following <a href='#Arone99'>Arone 99, p. 1-2</a>, <a href='#Goodwillie03'>Goodwillie 03, p. 6</a>.</p>
         1730 
         1731 <p>Observe that the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space of points</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(X,Y)</annotation></semantics></math> from Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>, given by the formula <a class='maruku-eqref' href='#eq:ConfigurationSpaceWithXAndY'>(3)</a></p>
         1732 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1733   Conf_n(X,Y)
         1734   \;\coloneqq\;
         1735   \Big(
         1736     \big(
         1737       (
         1738         X^n \setminus \mathbf{\Delta}_X^n
         1739       )
         1740       \times
         1741       Y^n
         1742     \big)
         1743     / \partial(X^n \times Y^n)
         1744   \Big)
         1745   /\Sigma(n)
         1746 
         1747 </annotation></semantics></math></div>
         1748 <p>is the <a class='existingWikiWord' href='/nlab/show/quotient+object'>quotient</a> by the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <em><a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a></em> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo>∧</mo><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>Conf_n(X) \wedge (Y/\partial Y)^n</annotation></semantics></math> of the plain Configuration space <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(X)</annotation></semantics></math> <a class='maruku-eqref' href='#eq:ConfigurationSpaceJustForX'>(2)</a> (regarded as a <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> with basepoint the class of the <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo>[</mo><mo>∂</mo><mrow><mo>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>\left[\partial\left(X^n\right)\right]</annotation></semantics></math>) with the analogous <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> given by <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, the latter in fact being (since here we do not form the <a class='existingWikiWord' href='/nlab/show/complement'>complement</a> by the <a class='existingWikiWord' href='/nlab/show/fat+diagonal'>fat diagonal</a>) an <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a> itself:</p>
         1749 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Y</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>Y</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1750   Y^{\times_n}/\partial (Y^{\times_n}) 
         1751   \;\simeq\;
         1752   ( Y/\partial Y )^{\wedge_n}
         1753   \,.
         1754 
         1755 </annotation></semantics></math></div>
         1756 <p>Hence in summary:</p>
         1757 <div class='maruku-equation' id='eq:ConfSplitsAsSmashProduct'><span class='maruku-eq-number'>(5)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mrow><mo>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'>
         1758   
         1759   Conf_n(X, Y)
         1760   \;\simeq\;
         1761   Conf^{ord}_n(X) \wedge_{\Sigma(n)} \left( Y/\partial Y \right)^{\wedge_n}
         1762   \,,
         1763 
         1764 </annotation></semantics></math></div>
         1765 <p>where</p>
         1766 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><msup><mi>X</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1767   Conf_n^{ord}(X)
         1768   \;\coloneqq\;
         1769   \left(
         1770     X^{\times_n} \setminus \mathbf{\Delta}_X^n
         1771   \right)/ \partial(X^n)
         1772 
         1773 </annotation></semantics></math></div>
         1774 <p>is the ordered configuration space <a class='maruku-eqref' href='#eq:DistinguishableConfigurationSpaceJustForX'>(1)</a>.</p>
         1775 
         1776 <p>This construction, regarded as a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> from <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological spaces</a> to <a class='existingWikiWord' href='/nlab/show/spectrum'>spectra</a></p>
         1777 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Spectra</mi></mtd></mtr> <mtr><mtd><mi>Z</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         1778   \array{
         1779     Top^{\ast/} 
         1780     &amp;\longrightarrow&amp;
         1781     Spectra
         1782     \\
         1783     Z 
         1784       &amp;\mapsto&amp;
         1785     \Sigma^\infty Conf^{ord}_n(X) \wedge_{\Sigma(n)} Z^{\wedge_n}
         1786   }
         1787 
         1788 </annotation></semantics></math></div>
         1789 <p>is an <a class='existingWikiWord' href='/nlab/show/n-homogeneous+%28%E2%88%9E%2C1%29-functor'>n-homogeneous (∞,1)-functor</a> in the sense of <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a>, and hence the partial <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sums</a> as <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> ranges</p>
         1790 <div class='maruku-equation' id='eq:IdentifyingTheGoodwillieTaylorStage'><span class='maruku-eq-number'>(6)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi><mspace width='thickmathspace'></mspace><mo>↦</mo><mspace width='thickmathspace'></mspace><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>
         1791   
         1792   Z 
         1793     \;\mapsto\;
         1794   \underset{k \in \{1, \cdot, n\}}{\bigoplus}
         1795   \Sigma^\infty Conf^{ord}_k(X) \wedge_{\Sigma(k)} Z^{\wedge_k}
         1796 
         1797 </annotation></semantics></math></div>
         1798 <p>are <a class='existingWikiWord' href='/nlab/show/n-excisive+%28%E2%88%9E%2C1%29-functor'>n-excisive (∞,1)-functors</a>. Moreover, by the stable splitting of mapping spaces <a class='maruku-eqref' href='#eq:StableSplittingOfMappingSpacesOutOfSphere'>(4)</a> of Prop. <a class='maruku-ref' href='#StableSplittingOfMappingSpacesOutOfEuclideanSpace'>2</a>, there is a <a class='existingWikiWord' href='/nlab/show/projection'>projection</a> morphism onto the first <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge summands</a></p>
         1799 <div class='maruku-equation' id='eq:ProjectionMaps'><span class='maruku-eq-number'>(7)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mi>Z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mi>Z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>≃</mo></mtd> <mtd><munder><mo>⊕</mo><mrow><mi>k</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>↓</mo><msup><mrow></mrow> <mpadded width='0'><mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         1800   
         1801   \array{
         1802     Maps_{cp}(\mathbb{R}^d, \Sigma^d Z)
         1803     &amp;=&amp;
         1804     Maps^{\ast/}( S^d, \Sigma^d Z)
         1805     &amp;\simeq&amp;
         1806     \underset{k \in \mathbb{N}}{\oplus} 
         1807       \Sigma^\infty Conf^{ord}_k(\mathbb{R}^d) \wedge_{\Sigma(k)} Z^{\wedge_k}
         1808     \\
         1809     &amp;&amp;
         1810     &amp;&amp;
         1811     \Big\downarrow {}^{\mathrlap{ p_n }}
         1812     \\
         1813     &amp;&amp;
         1814     &amp;&amp;
         1815      \underset{k \in \{1, \cdot, n\}}{\bigoplus}
         1816      \Sigma^\infty Conf^{ord}_k( \mathbb{R}^d ) \wedge_{\Sigma(k)} Z^{\wedge_k}
         1817   }
         1818 
         1819 </annotation></semantics></math></div>
         1820 <p>and this is <a class='existingWikiWord' href='/nlab/show/n-connected+object+of+an+%28infinity%2C1%29-topos'>(n+1)k-connected</a> when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi></mrow><annotation encoding='application/x-tex'>Z</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/n-connected+object+of+an+%28infinity%2C1%29-topos'>k-connected</a>.</p>
         1821 
         1822 <p>By <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a> this means that <a class='maruku-eqref' href='#eq:IdentifyingTheGoodwillieTaylorStage'>(6)</a> are, up to <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>equivalence</a>, the stages</p>
         1823 <div class='maruku-equation' id='eq:TheGoodwillieStagesOfTheMappingSpaceFunctor'><span class='maruku-eq-number'>(8)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>P</mi> <mi>n</mi></msub><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Z</mi><mo>↦</mo><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><mi>Z</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         1824   
         1825   P_n Maps^{\ast/}( S^d, \Sigma^d (-))
         1826   \;\colon\;
         1827   Z \mapsto
         1828   \underset{k \in \{1, \cdot, n\}}{\bigoplus}
         1829   \Sigma^\infty Conf^{ord}_k(S^d, Z) 
         1830 
         1831 </annotation></semantics></math></div>
         1832 <p>at <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi><mo>∈</mo><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>Z \in Top^{\ast/}</annotation></semantics></math> of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> for the <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a>-functor</p>
         1833 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo>⟶</mo><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1834   Maps_{cp}(\mathbb{R}^d, \Sigma^d (-))
         1835   =
         1836   Maps^{\ast/}( S^d, \Sigma^d (-))
         1837   \;\colon\;
         1838   Top^{\ast/} \longrightarrow Top^{\ast/}
         1839   \,.
         1840 
         1841 </annotation></semantics></math></div>
         1842 <p>Therefore the stable splitting theorem <a class='maruku-ref' href='#StableSplittingOfMappingSpacesOutOfEuclideanSpace'>2</a> may equivalently be read as expressing the mapping space functor equivalently as the <a class='existingWikiWord' href='/nlab/show/limit'>limit</a> over its <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a>.</p>
         1843 
         1844 <p>(<a href='#Arone99'>Arone 99, p. 1-2</a>, <a href='#Goodwillie03'>Goodwillie 03, p. 6</a>)</p>
         1845 
         1846 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mspace width='thinmathspace'></mspace></mrow><annotation encoding='application/x-tex'>\,</annotation></semantics></math></p>
         1847 
         1848 <h3 id='lax_closed_structure_on_'>Lax closed structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math></h3>
         1849 
         1850 <p>Notice that the first stage in the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(S^d, \Sigma^d(-))</annotation></semantics></math> is</p>
         1851 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><msub><mi>P</mi> <mn>1</mn></msub><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mn>1</mn> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><munder><munder><mrow><msubsup><mi>Conf</mi> <mn>1</mn> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo></mrow><mo>⏟</mo></munder><mrow><mo>≃</mo><msup><mi>S</mi> <mn>0</mn></msup></mrow></munder><mo>∧</mo><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mi>Maps</mi><mrow><mo>(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         1852   \begin{aligned}
         1853     P_1 Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y) )
         1854     &amp; =
         1855     \Sigma^\infty Conf^{ord}_1( \mathbb{R}^d , Y )
         1856     \\
         1857     &amp; \simeq
         1858     \Sigma^\infty 
         1859       \underset{\simeq S^0}{\underbrace{Conf^{ord}_1( \mathbb{R}^d )}} 
         1860       \wedge (Y/\partial Y)
         1861     \\
         1862     &amp; \simeq
         1863      \Sigma^\infty (Y/\partial Y)
         1864     \\
         1865     &amp; \simeq 
         1866      \Omega^d \Sigma^d  \Sigma^\infty (Y/\partial Y)
         1867     \\
         1868     &amp; \simeq
         1869     Maps\left(  \Sigma^\infty S^d, \Sigma^d (Y/\partial Y) \right)
         1870   \end{aligned}
         1871 
         1872 </annotation></semantics></math></div>
         1873 <p>Here in the first step we used <a class='maruku-eqref' href='#eq:TheGoodwillieStagesOfTheMappingSpaceFunctor'>(8)</a>, in the second step we used <a class='maruku-eqref' href='#eq:ConfSplitsAsSmashProduct'>(5)</a>. Under the brace we observe that space of configurations of a single point in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> is trivially <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> itself, which is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>≃</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \simeq \ast</annotation></semantics></math> and, due to <a class='existingWikiWord' href='/nlab/show/empty+set'>empty</a> <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math>, contributes a <a class='existingWikiWord' href='/nlab/show/0-sphere'>0-sphere</a>-factor to the <a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a>, which disappears. In the last last two steps we trivially rewrote the result to exhibit it as a <a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a>.</p>
         1874 
         1875 <p>Therefore the projection <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>p_1</annotation></semantics></math> <a class='maruku-eqref' href='#eq:ProjectionMaps'>(7)</a> to the first stage of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> is of the form</p>
         1876 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Maps</mi><mrow><mo>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo>⟶</mo><mi>Maps</mi><mrow><mo>(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         1877   p_1
         1878   \;\colon\;
         1879   \Sigma^\infty Maps\left(  S^d , \Sigma^d (Y /\partial Y) \right)
         1880   \longrightarrow
         1881   Maps
         1882   \left(  
         1883     \Sigma^\infty S^d, \Sigma^\infty \Sigma^d (Y / \partial Y)
         1884   \right)
         1885   \,.
         1886 
         1887 </annotation></semantics></math></div>
         1888 <p>Since <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/monoidal+functor'>strong monoidal functor</a> (<a href='suspension+spectrum#StrongMonoidalness'>here</a>), there is a canonical comparison morphism of this form, exhibiting the induce <a class='existingWikiWord' href='/nlab/show/closed+functor'>lax closed</a>-structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math>. Probably <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>p_1</annotation></semantics></math> coincides with that canonical morphism, up to equivalence.</p>
         1889 
         1890 <blockquote>
         1891 <p>Does it?</p>
         1892 </blockquote>
         1893 
         1894 <h2 id='related_concepts'>Related concepts</h2>
         1895 
         1896 <ul>
         1897 <li><a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a></li>
         1898 </ul>
         1899 
         1900 <h2 id='references'>References</h2>
         1901 
         1902 <p>The theorem is originally due to</p>
         1903 
         1904 <ul>
         1905 <li id='Snaith74'><a class='existingWikiWord' href='/nlab/show/Victor+Snaith'>Victor Snaith</a>, <em>A stable decomposition of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Ω</mi> <mi>n</mi></msup><msup><mi>S</mi> <mi>n</mi></msup><mi>X</mi></mrow><annotation encoding='application/x-tex'>\Omega^n S^n X</annotation></semantics></math></em>, Journal of the London Mathematical Society 7 (1974), 577 - 583 (<a href='https://www.maths.ed.ac.uk/~v1ranick/papers/snaiths.pdf'>pdf</a>)</li>
         1906 </ul>
         1907 
         1908 <p>using the homotopy equivalence before stabilization due to</p>
         1909 
         1910 <ul>
         1911 <li id='May72'>
         1912 <p><a class='existingWikiWord' href='/nlab/show/Peter+May'>Peter May</a>, <em>The geometry of iterated loop spaces</em>, Springer 1972 (<a href='https://www.math.uchicago.edu/~may/BOOKS/geom_iter.pdf'>pdf</a>)</p>
         1913 </li>
         1914 
         1915 <li id='Segal73'>
         1916 <p><a class='existingWikiWord' href='/nlab/show/Graeme+Segal'>Graeme Segal</a>, <em>Configuration-spaces and iterated loop-spaces</em>, Invent. Math. <strong>21</strong> (1973), 213–221. MR 0331377 (<a href='http://dodo.pdmi.ras.ru/~topology/books/segal.pdf'>pdf</a>)</p>
         1917 </li>
         1918 </ul>
         1919 
         1920 <p>An alternative proof is due to</p>
         1921 
         1922 <ul>
         1923 <li id='Cohen80'><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Stable proof of stable splittings</em>, Math. Proc. Camb. Phil. Soc., 1980, 88, 149 (<a href='https://doi.org/10.1017/S030500410005742X'>doi:10.1017/S030500410005742X</a>, <a href='https://www.cambridge.org/core/services/aop-cambridge-core/content/view/247D9F951F8AB99000E4FF6CB2DB9EA2/S030500410005742Xa.pdf/div-class-title-stable-proofs-of-stable-splittings-div.pdf'>pdf</a>)</li>
         1924 </ul>
         1925 
         1926 <p>Review and generalization is due to</p>
         1927 
         1928 <ul>
         1929 <li id='Boedigheimer87'><a class='existingWikiWord' href='/nlab/show/Carl-Friedrich+B%C3%B6digheimer'>Carl-Friedrich Bödigheimer</a>, <em>Stable splittings of mapping spaces</em>, Algebraic topology. Springer 1987. 174-187 (<a href='http://www.math.uni-bonn.de/~cfb/PUBLICATIONS/stable-splittings-of-mapping-spaces.pdf'>pdf</a>)</li>
         1930 </ul>
         1931 
         1932 <p>Interpretation in terms of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> of mapping spaces is due to</p>
         1933 
         1934 <ul>
         1935 <li id='Arone99'>
         1936 <p><a class='existingWikiWord' href='/nlab/show/Gregory+Arone'>Greg Arone</a>, <em>A generalization of Snaith-type filtration</em>, Transactions of the American Mathematical Society 351.3 (1999): 1123-1150. (<a href='https://www.ams.org/journals/tran/1999-351-03/S0002-9947-99-02405-8/S0002-9947-99-02405-8.pdf'>pdf</a>)</p>
         1937 </li>
         1938 
         1939 <li id='Ching05'>
         1940 <p><a class='existingWikiWord' href='/nlab/show/Michael+Ching'>Michael Ching</a>, <em>Calculus of Functors and Configuration Spaces</em>, Conference on Pure and Applied Topology Isle of Skye, Scotland, 21-25 June, 2005 (<a href='https://www3.amherst.edu/~mching/Work/skye.pdf'>pdf</a>)</p>
         1941 </li>
         1942 
         1943 <li id='Goodwillie03'>
         1944 <p><a class='existingWikiWord' href='/nlab/show/Thomas+Goodwillie'>Thomas Goodwillie</a>, p. 6 of <em>Calculus. III. Taylor series</em>, Geom. Topol. 7 (2003), 645–711 (<a href='http://www.msp.warwick.ac.uk/gt/2003/07/p019.xhtml'>journal</a>, <a href='http://arxiv.org/abs/math/0310481'>arXiv:math/0310481</a>))</p>
         1945 </li>
         1946 </ul>
         1947 
         1948 <p>A proof via <a class='existingWikiWord' href='/nlab/show/nonabelian+Poincar%C3%A9+duality'>nonabelian Poincaré duality</a>:</p>
         1949 
         1950 <ul>
         1951 <li>Lauren Bandklayder, <em>Stable splitting of mapping spaces via nonabelian Poincaré duality</em> (<a href='https://arxiv.org/abs/1705.03090'>arxiv:1705.03090</a>)</li>
         1952 </ul>
         1953 
         1954 <p>See also:</p>
         1955 
         1956 <ul>
         1957 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>What we still don’t understand about loop spaces of spheres</em>, Contemporary Mathematics 1998 (<a href='https://people.math.rochester.edu/faculty/doug/mypapers/loop.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Ravenel_LoopSpacesOfSpheres.pdf' title='pdf'>pdf</a>)</li>
         1958 </ul>
         1959 
         1960 <p>
         1961 </p>      </div>
         1962     </content>
         1963   </entry>
         1964   <entry>
         1965     <title type="html">Tarmo Uustalu</title>
         1966     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Tarmo+Uustalu"/>
         1967     <updated>2021-07-02T00:18:56Z</updated>
         1968     <published>2021-07-01T06:30:08Z</published>
         1969     <id>tag:ncatlab.org,2021-07-01:nLab,Tarmo+Uustalu</id>
         1970     <author>
         1971       <name>Dmitri Pavlov</name>
         1972     </author>
         1973     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Tarmo+Uustalu">
         1974       <div xmlns="http://www.w3.org/1999/xhtml">
         1975 <p>Tarmo Uustalu is a professor at the Dept. of Computer Science of Reykjavik University. He also has part-time post in the Dept. of Software Science of the Tallinn University of Technology (TUT) as a lead research scientist, taking care of the Lab for High-Assurance Software, in particular the Logic and Semantics Group.</p>
         1976 
         1977 <ul>
         1978 <li><a href='https://www.ioc.ee/~tarmo/'>Home page</a></li>
         1979 </ul>
         1980 
         1981 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p>
         1982 
         1983 <p>
         1984 </p>      </div>
         1985     </content>
         1986   </entry>
         1987   <entry>
         1988     <title type="html">Monster group</title>
         1989     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Monster+group"/>
         1990     <updated>2021-07-01T21:40:24Z</updated>
         1991     <published>2010-05-19T06:28:51Z</published>
         1992     <id>tag:ncatlab.org,2010-05-19:nLab,Monster+group</id>
         1993     <author>
         1994       <name>Urs Schreiber</name>
         1995     </author>
         1996     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Monster+group">
         1997       <div xmlns="http://www.w3.org/1999/xhtml">
         1998 <div class='rightHandSide'>
         1999 <div class='toc clickDown' tabindex='0'>
         2000 <h3 id='context'>Context</h3>
         2001 
         2002 <h4 id='exceptional_structures'>Exceptional structures</h4>
         2003 
         2004 <div class='hide'>
         2005 <p><strong><a class='existingWikiWord' href='/nlab/show/exceptional+structure'>exceptional structures</a></strong>, <a class='existingWikiWord' href='/nlab/show/exceptional+isomorphism'>exceptional isomorphisms</a></p>
         2006 
         2007 <h2 id='examples'>Examples</h2>
         2008 
         2009 <ul>
         2010 <li>
         2011 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>exceptional finite groups</a></p>
         2012 
         2013 <ul>
         2014 <li>
         2015 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p>
         2016 </li>
         2017 
         2018 <li>
         2019 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>,</p>
         2020 </li>
         2021 
         2022 <li>
         2023 <p><a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a></p>
         2024 </li>
         2025 </ul>
         2026 </li>
         2027 
         2028 <li>
         2029 <p>exceptional <a class='existingWikiWord' href='/nlab/show/finite+rotation+group'>finite rotation groups</a>:</p>
         2030 
         2031 <ul>
         2032 <li>
         2033 <p><a class='existingWikiWord' href='/nlab/show/tetrahedral+group'>tetrahedral group</a></p>
         2034 </li>
         2035 
         2036 <li>
         2037 <p><a class='existingWikiWord' href='/nlab/show/octahedral+group'>octahedral group</a></p>
         2038 </li>
         2039 
         2040 <li>
         2041 <p><a class='existingWikiWord' href='/nlab/show/icosahedral+group'>icosahedral group</a></p>
         2042 </li>
         2043 </ul>
         2044 </li>
         2045 
         2046 <li>
         2047 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+group'>exceptional Lie groups</a></p>
         2048 
         2049 <ul>
         2050 <li>
         2051 <p><a class='existingWikiWord' href='/nlab/show/G2'>G2</a></p>
         2052 </li>
         2053 
         2054 <li>
         2055 <p><a class='existingWikiWord' href='/nlab/show/F4'>F4</a></p>
         2056 </li>
         2057 
         2058 <li>
         2059 <p><a class='existingWikiWord' href='/nlab/show/E6'>E6</a>, <a class='existingWikiWord' href='/nlab/show/E7'>E7</a>, <a class='existingWikiWord' href='/nlab/show/E8'>E8</a></p>
         2060 </li>
         2061 </ul>
         2062 
         2063 <p>and <a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody groups</a>:</p>
         2064 
         2065 <ul>
         2066 <li><a class='existingWikiWord' href='/nlab/show/E9'>E9</a>, <a class='existingWikiWord' href='/nlab/show/E10'>E10</a>, <a class='existingWikiWord' href='/nlab/show/E11'>E11</a>, …</li>
         2067 </ul>
         2068 </li>
         2069 
         2070 <li>
         2071 <p><a class='existingWikiWord' href='/nlab/show/Dwyer-Wilkerson+H-space'>Dwyer-Wilkerson H-space</a></p>
         2072 </li>
         2073 
         2074 <li>
         2075 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+algebra'>exceptional Lie algebras</a></p>
         2076 </li>
         2077 
         2078 <li>
         2079 <p><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>exceptional Jordan algebra</a></p>
         2080 
         2081 <ul>
         2082 <li><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>Albert algebra</a></li>
         2083 </ul>
         2084 </li>
         2085 
         2086 <li>
         2087 <p>exceptional <a class='existingWikiWord' href='/nlab/show/Jordan+superalgebra'>Jordan superalgebra</a>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>K</mi> <mn>10</mn></msub></mrow><annotation encoding='application/x-tex'>K_10</annotation></semantics></math></p>
         2088 </li>
         2089 
         2090 <li>
         2091 <p><a class='existingWikiWord' href='/nlab/show/Leech+lattice'>Leech lattice</a></p>
         2092 </li>
         2093 
         2094 <li>
         2095 <p><a class='existingWikiWord' href='/nlab/show/Cayley+plane'>Cayley plane</a></p>
         2096 </li>
         2097 </ul>
         2098 
         2099 <h2 id='interrelations'>Interrelations</h2>
         2100 
         2101 <ul>
         2102 <li>
         2103 <p><a class='existingWikiWord' href='/nlab/show/division+algebra+and+supersymmetry'>supersymmetry and division algebras</a></p>
         2104 </li>
         2105 
         2106 <li>
         2107 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+magic+square'>Freudenthal magic square</a></p>
         2108 </li>
         2109 
         2110 <li>
         2111 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>moonshine</a></p>
         2112 
         2113 <ul>
         2114 <li>
         2115 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p>
         2116 </li>
         2117 
         2118 <li>
         2119 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p>
         2120 </li>
         2121 
         2122 <li>
         2123 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O&#39;Nan moonshine</a></p>
         2124 </li>
         2125 </ul>
         2126 </li>
         2127 </ul>
         2128 
         2129 <h2 id='applications'>Applications</h2>
         2130 
         2131 <ul>
         2132 <li>
         2133 <p><a class='existingWikiWord' href='/nlab/show/exceptional+geometry'>exceptional geometry</a>, <a class='existingWikiWord' href='/nlab/show/exceptional+generalized+geometry'>exceptional generalized geometry</a>,</p>
         2134 </li>
         2135 
         2136 <li>
         2137 <p><a class='existingWikiWord' href='/nlab/show/exceptional+field+theory'>exceptional field theory</a></p>
         2138 </li>
         2139 </ul>
         2140 
         2141 <h2 id='philosophy'>Philosophy</h2>
         2142 
         2143 <ul>
         2144 <li><a class='existingWikiWord' href='/nlab/show/universal+exceptionalism'>universal exceptionalism</a></li>
         2145 </ul>
         2146 </div>
         2147 
         2148 <h4 id='group_theory'>Group Theory</h4>
         2149 
         2150 <div class='hide'>
         2151 <p><strong><a class='existingWikiWord' href='/nlab/show/group+theory'>group theory</a></strong></p>
         2152 
         2153 <ul>
         2154 <li><a class='existingWikiWord' href='/nlab/show/group'>group</a>, <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></li>
         2155 
         2156 <li><a class='existingWikiWord' href='/nlab/show/group+object'>group object</a>, <a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>group object in an (∞,1)-category</a></li>
         2157 
         2158 <li><a class='existingWikiWord' href='/nlab/show/abelian+group'>abelian group</a>, <a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></li>
         2159 
         2160 <li><a class='existingWikiWord' href='/nlab/show/action'>group action</a>, <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></li>
         2161 
         2162 <li><a class='existingWikiWord' href='/nlab/show/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/infinity-representation'>∞-representation</a></li>
         2163 
         2164 <li><a class='existingWikiWord' href='/nlab/show/progroup'>progroup</a></li>
         2165 
         2166 <li><a class='existingWikiWord' href='/nlab/show/homogeneous+space'>homogeneous space</a></li>
         2167 </ul>
         2168 
         2169 <h3 id='classical_groups'>Classical groups</h3>
         2170 
         2171 <ul>
         2172 <li>
         2173 <p><a class='existingWikiWord' href='/nlab/show/general+linear+group'>general linear group</a></p>
         2174 </li>
         2175 
         2176 <li>
         2177 <p><a class='existingWikiWord' href='/nlab/show/unitary+group'>unitary group</a></p>
         2178 
         2179 <ul>
         2180 <li><a class='existingWikiWord' href='/nlab/show/special+unitary+group'>special unitary group</a>. <a class='existingWikiWord' href='/nlab/show/projective+unitary+group'>projective unitary group</a></li>
         2181 </ul>
         2182 </li>
         2183 
         2184 <li>
         2185 <p><a class='existingWikiWord' href='/nlab/show/orthogonal+group'>orthogonal group</a></p>
         2186 
         2187 <ul>
         2188 <li><a class='existingWikiWord' href='/nlab/show/special+orthogonal+group'>special orthogonal group</a></li>
         2189 </ul>
         2190 </li>
         2191 
         2192 <li>
         2193 <p><a class='existingWikiWord' href='/nlab/show/symplectic+group'>symplectic group</a></p>
         2194 </li>
         2195 </ul>
         2196 
         2197 <h3 id='finite_groups'>Finite groups</h3>
         2198 
         2199 <ul>
         2200 <li>
         2201 <p><a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a></p>
         2202 </li>
         2203 
         2204 <li>
         2205 <p><a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>, <a class='existingWikiWord' href='/nlab/show/cyclic+group'>cyclic group</a>, <a class='existingWikiWord' href='/nlab/show/braid+group'>braid group</a></p>
         2206 </li>
         2207 
         2208 <li>
         2209 <p><a class='existingWikiWord' href='/nlab/show/classification+of+finite+simple+groups'>classification of finite simple groups</a></p>
         2210 </li>
         2211 
         2212 <li>
         2213 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a></p>
         2214 
         2215 <ul>
         2216 <li><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a></li>
         2217 </ul>
         2218 </li>
         2219 </ul>
         2220 
         2221 <h3 id='group_schemes'>Group schemes</h3>
         2222 
         2223 <ul>
         2224 <li><a class='existingWikiWord' href='/nlab/show/algebraic+group'>algebraic group</a></li>
         2225 
         2226 <li><a class='existingWikiWord' href='/nlab/show/abelian+variety'>abelian variety</a></li>
         2227 </ul>
         2228 
         2229 <h3 id='topological_groups'>Topological groups</h3>
         2230 
         2231 <ul>
         2232 <li>
         2233 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p>
         2234 </li>
         2235 
         2236 <li>
         2237 <p><a class='existingWikiWord' href='/nlab/show/compact+topological+group'>compact topological group</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+group'>locally compact topological group</a></p>
         2238 </li>
         2239 
         2240 <li>
         2241 <p><a class='existingWikiWord' href='/nlab/show/maximal+compact+subgroup'>maximal compact subgroup</a></p>
         2242 </li>
         2243 
         2244 <li>
         2245 <p><a class='existingWikiWord' href='/nlab/show/string+group'>string group</a></p>
         2246 </li>
         2247 </ul>
         2248 
         2249 <h3 id='lie_groups'>Lie groups</h3>
         2250 
         2251 <ul>
         2252 <li>
         2253 <p><a class='existingWikiWord' href='/nlab/show/Lie+group'>Lie group</a></p>
         2254 </li>
         2255 
         2256 <li>
         2257 <p><a class='existingWikiWord' href='/nlab/show/compact+Lie+group'>compact Lie group</a></p>
         2258 </li>
         2259 
         2260 <li>
         2261 <p><a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody group</a></p>
         2262 </li>
         2263 </ul>
         2264 
         2265 <h3 id='superlie_groups'>Super-Lie groups</h3>
         2266 
         2267 <ul>
         2268 <li>
         2269 <p><a class='existingWikiWord' href='/nlab/show/supergroup'>super Lie group</a></p>
         2270 </li>
         2271 
         2272 <li>
         2273 <p><a class='existingWikiWord' href='/nlab/show/super+Euclidean+group'>super Euclidean group</a></p>
         2274 </li>
         2275 </ul>
         2276 
         2277 <h3 id='higher_groups'>Higher groups</h3>
         2278 
         2279 <ul>
         2280 <li>
         2281 <p><a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a></p>
         2282 
         2283 <ul>
         2284 <li><a class='existingWikiWord' href='/nlab/show/crossed+module'>crossed module</a>, <a class='existingWikiWord' href='/nlab/show/strict+2-group'>strict 2-group</a></li>
         2285 </ul>
         2286 </li>
         2287 
         2288 <li>
         2289 <p><a class='existingWikiWord' href='/nlab/show/n-group'>n-group</a></p>
         2290 </li>
         2291 
         2292 <li>
         2293 <p><a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></p>
         2294 
         2295 <ul>
         2296 <li>
         2297 <p><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></p>
         2298 </li>
         2299 
         2300 <li>
         2301 <p><a class='existingWikiWord' href='/nlab/show/crossed+complex'>crossed complex</a></p>
         2302 </li>
         2303 
         2304 <li>
         2305 <p><a class='existingWikiWord' href='/nlab/show/k-tuply+groupal+n-groupoid'>k-tuply groupal n-groupoid</a></p>
         2306 </li>
         2307 
         2308 <li>
         2309 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p>
         2310 </li>
         2311 </ul>
         2312 </li>
         2313 
         2314 <li>
         2315 <p><a class='existingWikiWord' href='/nlab/show/circle+n-group'>circle n-group</a>, <a class='existingWikiWord' href='/nlab/show/string+2-group'>string 2-group</a>, <a class='existingWikiWord' href='/nlab/show/fivebrane+6-group'>fivebrane Lie 6-group</a></p>
         2316 </li>
         2317 </ul>
         2318 
         2319 <h3 id='cohomology_and_extensions'>Cohomology and Extensions</h3>
         2320 
         2321 <ul>
         2322 <li>
         2323 <p><a class='existingWikiWord' href='/nlab/show/group+cohomology'>group cohomology</a></p>
         2324 </li>
         2325 
         2326 <li>
         2327 <p><a class='existingWikiWord' href='/nlab/show/group+extension'>group extension</a>,</p>
         2328 </li>
         2329 
         2330 <li>
         2331 <p><a class='existingWikiWord' href='/nlab/show/infinity-group+extension'>∞-group extension</a>, <a class='existingWikiWord' href='/nlab/show/Ext'>Ext-group</a></p>
         2332 </li>
         2333 </ul>
         2334 
         2335 <h3 id='_related_concepts'>Related concepts</h3>
         2336 
         2337 <ul>
         2338 <li><a class='existingWikiWord' href='/nlab/show/quantum+group'>quantum group</a></li>
         2339 </ul>
         2340 <div>
         2341 <p>
         2342   <a href='/nlab/edit/group+theory+-+contents'>Edit this sidebar</a>
         2343 </p>
         2344 </div></div>
         2345 </div>
         2346 </div>
         2347 
         2348 <h1 id='contents'>Contents</h1>
         2349 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#history'>History</a></li><li><a href='#presentation'>Presentation</a><ul><li><a href='#via_coxeter_groups'>Via Coxeter groups</a></li><li><a href='#ViaAutomorphisms'>Via automorphisms of a super vertex operator algebra</a></li></ul></li><li><a href='#related_concepts_2'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div>
         2350 <h2 id='idea'>Idea</h2>
         2351 
         2352 <p>The <strong>Monster group</strong> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a> that is the largest of the <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple group</a>s. It has <a class='existingWikiWord' href='/nlab/show/order+of+a+group'>order</a></p>
         2353 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd></mtd> <mtd><msup><mn>2</mn> <mn>46</mn></msup><mo>⋅</mo><msup><mn>3</mn> <mn>20</mn></msup><mo>⋅</mo><msup><mn>5</mn> <mn>9</mn></msup><mo>⋅</mo><msup><mn>7</mn> <mn>6</mn></msup><mo>⋅</mo><msup><mn>11</mn> <mn>2</mn></msup><mo>⋅</mo><msup><mn>13</mn> <mn>3</mn></msup><mo>⋅</mo><mn>17</mn><mo>⋅</mo><mn>19</mn><mo>⋅</mo><mn>23</mn><mo>⋅</mo><mn>29</mn><mo>⋅</mo><mn>31</mn><mo>⋅</mo><mn>41</mn><mo>⋅</mo><mn>47</mn><mo>⋅</mo><mn>59</mn><mo>⋅</mo><mn>71</mn></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mn>808017424794512875886459904961710757005754368000000000</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         2354  \begin{aligned}
         2355 &amp; 2^{46}\cdot 3^{20}\cdot 5^9\cdot 7^6\cdot 11^2\cdot 13^3\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 41\cdot 47\cdot 59\cdot 71 
         2356   \\
         2357  &amp; = 808017424794512875886459904961710757005754368000000000
         2358  \end{aligned}
         2359 
         2360 </annotation></semantics></math></div>
         2361 <p>and contains all but six (the ‘<a class='existingWikiWord' href='/nlab/show/pariah+group'>pariah groups</a>’) of the other 25 <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a> as <a class='existingWikiWord' href='/nlab/show/subquotient'>subquotients</a>, called the <em><a class='existingWikiWord' href='/nlab/show/Happy+Family'>Happy Family</a></em>.</p>
         2362 
         2363 <p>See also <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a>.</p>
         2364 
         2365 <h2 id='history'>History</h2>
         2366 
         2367 <p>The Monster group was predicted to exist by <a class='existingWikiWord' href='/nlab/show/Bernd+Fischer'>Bernd Fischer</a> and <a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> in 1973, as a <a class='existingWikiWord' href='/nlab/show/simple+group'>simple group</a> containing the <a class='existingWikiWord' href='/nlab/show/Fischer+group'>Fischer groups</a> and some other sporadic simple groups as <a class='existingWikiWord' href='/nlab/show/subquotient'>subquotients</a>. Subsequent work by Fischer, Conway, Norton and Thompson estimated the order of <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> and discovered other properties and subgroups, assuming that it existed. In a famous paper</p>
         2368 
         2369 <ul>
         2370 <li><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a>, <em>The Friendly Giant</em> , Inventiones (1982)</li>
         2371 </ul>
         2372 
         2373 <p>Griess proved the existence of the largest simple sporadic group. The author constructs “by hand” a non-associative but commutative algebra of dimension 196883, and showed that the <a class='existingWikiWord' href='/nlab/show/automorphism'>automorphism group</a> of this algebra is the conjectured friendly giant/monster simple group. The name “Friendly Giant” for the Monster did not take on.</p>
         2374 
         2375 <p>After Griess found this algebra <a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a> and Meurman and/or Borcherds showed that the Griess algebra is just the degree 2 part of the infinite dimensional <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine vertex algebra</a>.</p>
         2376 
         2377 <p>There is a school of thought, going back to at least <a class='existingWikiWord' href='/nlab/show/Israel+Gelfand'>Israel Gelfand</a>, that sporadic groups are really members of some other infinite families of algebraic objects, but due to numerical coincidences or the like, just happen to be groups (see <a href='http://golem.ph.utexas.edu/category/2006/09/mathematical_kinds.html'>this nCafe post</a>). One version of this, in the case of the Monster (and perhaps for other sporadic groups via <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a> phenomena) is that what we know as the Monster is just a shadow of a <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a>, as the Monster can be constructed as an automorphism group of a <a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal field theory</a>, a structure rich enough to have a automorphism 2-group(oid) (see <a href='http://golem.ph.utexas.edu/category/2008/10/john_mckay_visits_kent.html#c019440'>this nCafe discussion</a>).</p>
         2378 
         2379 <h2 id='presentation'>Presentation</h2>
         2380 
         2381 <h3 id='via_coxeter_groups'>Via Coxeter groups</h3>
         2382 
         2383 <p>The Monster admits a reasonably succinct description in terms of <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter groups</a>. Let <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[n]</annotation></semantics></math> denote the linear <a class='existingWikiWord' href='/nlab/show/graph'>graph</a> with vertices <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>n</mi></mrow><annotation encoding='application/x-tex'>0, 1, \ldots, n</annotation></semantics></math> with an edge between adjacent numbers <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>i, i+1</annotation></semantics></math> and no others. If <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math> is the terminal (1-element) graph, there is a map <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [n]</annotation></semantics></math>, mapping the vertex of <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math> to the vertex <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math>. Regarding this as an object in the <a class='existingWikiWord' href='/nlab/show/under+category'>undercategory</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>↓</mo><mi>Graph</mi></mrow><annotation encoding='application/x-tex'>1 \downarrow Graph</annotation></semantics></math>, let <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{443}</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/coproduct'>coproduct</a> of the three objects <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>4</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [4]</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>4</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [4]</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>3</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [3]</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>↓</mo><mi>Graph</mi></mrow><annotation encoding='application/x-tex'>1 \downarrow Graph</annotation></semantics></math>. This (pointed) graph has 12 elements and is shaped like a <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, with arms of length 4, 4, 3 emanating from a central vertex of valence <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>.</p>
         2384 
         2385 <p>Regard <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{443}</annotation></semantics></math> as a <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter diagram</a>. The associated <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter group</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>C</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>C_{443}</annotation></semantics></math> is given by a <a class='existingWikiWord' href='/nlab/show/group+presentation'>group presentation</a> with 12 generators (represented by the vertices) of order <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math> (so 12 relators of the form <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>x</mi> <mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>x^2 = 1</annotation></semantics></math>), with a relation <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>x</mi><mi>y</mi><msup><mo stretchy='false'>)</mo> <mn>3</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(x y)^3 = 1</annotation></semantics></math> if <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>x, y</annotation></semantics></math> are adjacent vertices (so 11 relators, one for each edge), and <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mi>y</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>x y = y x</annotation></semantics></math> if <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>x, y</annotation></semantics></math> are non-adjacent (55 more relators). This Coxeter group (12 generators, 78 relators) is infinite, but by modding out by another strange ‘spider’ relator</p>
         2386 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>a</mi><msub><mi>b</mi> <mn>1</mn></msub><msub><mi>c</mi> <mn>1</mn></msub><mi>a</mi><msub><mi>b</mi> <mn>2</mn></msub><msub><mi>c</mi> <mn>2</mn></msub><mi>a</mi><msub><mi>b</mi> <mn>3</mn></msub><msub><mi>c</mi> <mn>3</mn></msub><msup><mo stretchy='false'>)</mo> <mn>10</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(a b_1 c_1 a b_2 c_2 a b_3 c_3)^{10} = 1</annotation></semantics></math></div>
         2387 <p>the resulting quotient <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math> turns out to be a <a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a>. Here <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> is the central vertex of valence <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1, c_1</annotation></semantics></math> are on an arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math> with <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1</annotation></semantics></math> adjacent to <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>≠</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>c_1 \neq a</annotation></semantics></math> adjacent to <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1</annotation></semantics></math>; similarly for <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>b_2, c_2</annotation></semantics></math> on the other arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math>, and for <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>b_3, c_3</annotation></semantics></math> on the arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>. See <a href='http://www.maths.qmul.ac.uk/~jnb/web/Pres/Mnst.html'>here</a> if this is not clear.</p>
         2388 
         2389 <p>It turns out that <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math> has a <a class='existingWikiWord' href='/nlab/show/center'>center</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> of order <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math>, and the Monster <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> is the quotient, i.e. the indicated term in the exact sequence</p>
         2390 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo>→</mo><mi>C</mi><mo>→</mo><mi>N</mi><mo>→</mo><mi>M</mi><mo>→</mo><mn>1</mn><mo>.</mo></mrow><annotation encoding='application/x-tex'>1 \to C \to N \to M \to 1.</annotation></semantics></math></div>
         2391 <p>This implicitly describes the Monster in terms of 12 generators and 80 relators.</p>
         2392 
         2393 <p>Such “<math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>-group” presentations (Coxeter group based on a similar <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>-diagram, modulo a spider relation) are linked to a number of finite simple group constructions, the most famous of which is perhaps <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>555</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{555}</annotation></semantics></math> which is a presentation of the “Bimonster” (the <a class='existingWikiWord' href='/nlab/show/wreath+product'>wreath product</a> of the Monster with <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℤ</mi><mo stretchy='false'>/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\mathbb{Z}/2</annotation></semantics></math>). See <a href='#Iv'>Ivanov</a> for a general description of these. The presentation of the Monster given above was established in <a href='#Iv2'>Ivanov2</a>.</p>
         2394 
         2395 <h3 id='ViaAutomorphisms'>Via automorphisms of a super vertex operator algebra</h3>
         2396 
         2397 <p>There is a <a class='existingWikiWord' href='/nlab/show/super+vertex+operator+algebra'>super vertex operator algebra</a>, the <a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex operator algebra</a>, whose <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> of <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a VOA</a> is the <a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a>.</p>
         2398 
         2399 <p>(<a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a>, <a href='#GriessLam11'>Griess-Lam 11</a>)</p>
         2400 
         2401 <h2 id='related_concepts_2'>Related concepts</h2>
         2402 
         2403 <ul>
         2404 <li>
         2405 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a>,</p>
         2406 </li>
         2407 
         2408 <li>
         2409 <p><a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex algebra</a></p>
         2410 </li>
         2411 
         2412 <li>
         2413 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p>
         2414 </li>
         2415 </ul>
         2416 
         2417 <h2 id='references'>References</h2>
         2418 
         2419 <ul>
         2420 <li>
         2421 <p><a href='http://mathoverflow.net/users/39521/adam-p-goucher'>Adam P. Goucher</a>, <em>Presentation of the Monster Group</em>, (<a href='http://mathoverflow.net/q/142216'>MO comment 2013-09-15</a>)</p>
         2422 </li>
         2423 
         2424 <li id='Iv'>
         2425 <p>Alexander Ivanov, <em>Y-groups via transitive extension</em>, Journal of Algebra, Volume 218, Issue 2 (August 15, 1999), 412–435. (<a href='http://www.sciencedirect.com/science/article/pii/S0021869399978821'>web</a>)</p>
         2426 </li>
         2427 
         2428 <li id='Iv2'>
         2429 <p>A. A. Ivanov, <em>Constructing the Monster via its Y-presentation</em>, in Combinatorics, Paul Erdős is Eighty, Bolyai Society Mathematical Studies, Vol. 1 (1993), 253-270.</p>
         2430 </li>
         2431 
         2432 <li id='FrenkelLepowskiMeurman89'>
         2433 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, <em>Vertex operator algebras and the monster</em>, Pure and Applied Mathematics <strong>134</strong>, Academic Press, New York 1998. liv+508 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=996026'>MR0996026</a></p>
         2434 </li>
         2435 
         2436 <li id='GriessLam11'>
         2437 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> Jr., Ching Hung Lam, <em>A new existence proof of the Monster by VOA theory</em> (<a href='https://arxiv.org/abs/1103.1414'>arXiv:1103.1414</a>)</p>
         2438 </li>
         2439 
         2440 <li>
         2441 <p><a class='existingWikiWord' href='/nlab/show/Andr%C3%A9+Henriques'>Andre Henriques</a>, <em><a href='http://mathoverflow.net/questions/69222/h4-of-the-monster'><math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mn>4</mn></msup></mrow><annotation encoding='application/x-tex'>H^4</annotation></semantics></math> of the monster</a></em></p>
         2442 </li>
         2443 </ul>
         2444 
         2445 <p>Possible relation to <a class='existingWikiWord' href='/nlab/show/bosonic+M-theory'>bosonic M-theory</a>:</p>
         2446 
         2447 <ul>
         2448 <li><a class='existingWikiWord' href='/nlab/show/Alessio+Marrani'>Alessio Marrani</a>, <a class='existingWikiWord' href='/nlab/show/Michael+Rios'>Michael Rios</a>, <a class='existingWikiWord' href='/nlab/show/David+Chester'>David Chester</a>, <em>Monstrous M-theory</em> (<a href='https://arxiv.org/abs/2008.06742'>arXiv:2008.06742</a>)</li>
         2449 </ul>
         2450 <div style='float: right; margin: 0 20px 10px 20px;'><img alt='The Monster' src='http://t0.gstatic.com/images?q=tbn:nJNML0QhNiejuM:http://open.salon.com/files/cookie-monster3-7769871237963363.jpg ' width='80'/></div>
         2451 <p>
         2452 </p>
         2453 
         2454 <p>
         2455 </p>
         2456 
         2457 <p>
         2458 </p>      </div>
         2459     </content>
         2460   </entry>
         2461   <entry>
         2462     <title type="html">Moonshine</title>
         2463     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Moonshine"/>
         2464     <updated>2021-07-01T21:06:02Z</updated>
         2465     <published>2010-05-18T20:54:08Z</published>
         2466     <id>tag:ncatlab.org,2010-05-18:nLab,Moonshine</id>
         2467     <author>
         2468       <name>Urs Schreiber</name>
         2469     </author>
         2470     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Moonshine">
         2471       <div xmlns="http://www.w3.org/1999/xhtml">
         2472 <div class='rightHandSide'>
         2473 <div class='toc clickDown' tabindex='0'>
         2474 <h3 id='context'>Context</h3>
         2475 
         2476 <h4 id='exceptional_structures'>Exceptional structures</h4>
         2477 
         2478 <div class='hide'>
         2479 <p><strong><a class='existingWikiWord' href='/nlab/show/exceptional+structure'>exceptional structures</a></strong>, <a class='existingWikiWord' href='/nlab/show/exceptional+isomorphism'>exceptional isomorphisms</a></p>
         2480 
         2481 <h2 id='examples'>Examples</h2>
         2482 
         2483 <ul>
         2484 <li>
         2485 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>exceptional finite groups</a></p>
         2486 
         2487 <ul>
         2488 <li>
         2489 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p>
         2490 </li>
         2491 
         2492 <li>
         2493 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>,</p>
         2494 </li>
         2495 
         2496 <li>
         2497 <p><a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a></p>
         2498 </li>
         2499 </ul>
         2500 </li>
         2501 
         2502 <li>
         2503 <p>exceptional <a class='existingWikiWord' href='/nlab/show/finite+rotation+group'>finite rotation groups</a>:</p>
         2504 
         2505 <ul>
         2506 <li>
         2507 <p><a class='existingWikiWord' href='/nlab/show/tetrahedral+group'>tetrahedral group</a></p>
         2508 </li>
         2509 
         2510 <li>
         2511 <p><a class='existingWikiWord' href='/nlab/show/octahedral+group'>octahedral group</a></p>
         2512 </li>
         2513 
         2514 <li>
         2515 <p><a class='existingWikiWord' href='/nlab/show/icosahedral+group'>icosahedral group</a></p>
         2516 </li>
         2517 </ul>
         2518 </li>
         2519 
         2520 <li>
         2521 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+group'>exceptional Lie groups</a></p>
         2522 
         2523 <ul>
         2524 <li>
         2525 <p><a class='existingWikiWord' href='/nlab/show/G2'>G2</a></p>
         2526 </li>
         2527 
         2528 <li>
         2529 <p><a class='existingWikiWord' href='/nlab/show/F4'>F4</a></p>
         2530 </li>
         2531 
         2532 <li>
         2533 <p><a class='existingWikiWord' href='/nlab/show/E6'>E6</a>, <a class='existingWikiWord' href='/nlab/show/E7'>E7</a>, <a class='existingWikiWord' href='/nlab/show/E8'>E8</a></p>
         2534 </li>
         2535 </ul>
         2536 
         2537 <p>and <a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody groups</a>:</p>
         2538 
         2539 <ul>
         2540 <li><a class='existingWikiWord' href='/nlab/show/E9'>E9</a>, <a class='existingWikiWord' href='/nlab/show/E10'>E10</a>, <a class='existingWikiWord' href='/nlab/show/E11'>E11</a>, …</li>
         2541 </ul>
         2542 </li>
         2543 
         2544 <li>
         2545 <p><a class='existingWikiWord' href='/nlab/show/Dwyer-Wilkerson+H-space'>Dwyer-Wilkerson H-space</a></p>
         2546 </li>
         2547 
         2548 <li>
         2549 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+algebra'>exceptional Lie algebras</a></p>
         2550 </li>
         2551 
         2552 <li>
         2553 <p><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>exceptional Jordan algebra</a></p>
         2554 
         2555 <ul>
         2556 <li><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>Albert algebra</a></li>
         2557 </ul>
         2558 </li>
         2559 
         2560 <li>
         2561 <p>exceptional <a class='existingWikiWord' href='/nlab/show/Jordan+superalgebra'>Jordan superalgebra</a>, <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>K</mi> <mn>10</mn></msub></mrow><annotation encoding='application/x-tex'>K_10</annotation></semantics></math></p>
         2562 </li>
         2563 
         2564 <li>
         2565 <p><a class='existingWikiWord' href='/nlab/show/Leech+lattice'>Leech lattice</a></p>
         2566 </li>
         2567 
         2568 <li>
         2569 <p><a class='existingWikiWord' href='/nlab/show/Cayley+plane'>Cayley plane</a></p>
         2570 </li>
         2571 </ul>
         2572 
         2573 <h2 id='interrelations'>Interrelations</h2>
         2574 
         2575 <ul>
         2576 <li>
         2577 <p><a class='existingWikiWord' href='/nlab/show/division+algebra+and+supersymmetry'>supersymmetry and division algebras</a></p>
         2578 </li>
         2579 
         2580 <li>
         2581 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+magic+square'>Freudenthal magic square</a></p>
         2582 </li>
         2583 
         2584 <li>
         2585 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>moonshine</a></p>
         2586 
         2587 <ul>
         2588 <li>
         2589 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p>
         2590 </li>
         2591 
         2592 <li>
         2593 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p>
         2594 </li>
         2595 
         2596 <li>
         2597 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O&#39;Nan moonshine</a></p>
         2598 </li>
         2599 </ul>
         2600 </li>
         2601 </ul>
         2602 
         2603 <h2 id='applications'>Applications</h2>
         2604 
         2605 <ul>
         2606 <li>
         2607 <p><a class='existingWikiWord' href='/nlab/show/exceptional+geometry'>exceptional geometry</a>, <a class='existingWikiWord' href='/nlab/show/exceptional+generalized+geometry'>exceptional generalized geometry</a>,</p>
         2608 </li>
         2609 
         2610 <li>
         2611 <p><a class='existingWikiWord' href='/nlab/show/exceptional+field+theory'>exceptional field theory</a></p>
         2612 </li>
         2613 </ul>
         2614 
         2615 <h2 id='philosophy'>Philosophy</h2>
         2616 
         2617 <ul>
         2618 <li><a class='existingWikiWord' href='/nlab/show/universal+exceptionalism'>universal exceptionalism</a></li>
         2619 </ul>
         2620 </div>
         2621 </div>
         2622 </div>
         2623 
         2624 <h1 id='contents'>Contents</h1>
         2625 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#AutomorphismGroupsOfVertexOperatorAlgebras'>Automorphism groups of vertex operator algebras</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a><ul><li><a href='#general'>General</a></li><li><a href='#historical_references'>Historical References</a></li><li><a href='#FurtherDevelomentsReferences'>Further developments</a></li><li><a href='#realization_in_superstring_theory'>Realization in superstring theory</a></li></ul></li></ul></div>
         2626 <h2 id='idea'>Idea</h2>
         2627 
         2628 <p>Moonshine usually refers to the mysterious connections between the <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster simple group</a> and the modular function <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi></mrow><annotation encoding='application/x-tex'>j</annotation></semantics></math>, the <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a>. There were a bunch of <a class='existingWikiWord' href='/nlab/show/conjecture'>conjectures</a> about this connection that were proved by <a class='existingWikiWord' href='/nlab/show/Richard+Borcherds'>Richard Borcherds</a>, en passant mentioning the existence of the <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine vertex algebra</a> (constructed then later in <a href='#FrenkelLepowskiMeurman89'>FLM 89</a>). Nowadays there is also Moonshine for other simple groups, by the work of J. Duncan. Eventually there should be an entry for the general moonshine phenomenon.</p>
         2629 
         2630 <p>The whole idea of moonshine began with <a class='existingWikiWord' href='/nlab/show/John+McKay'>John McKay</a>’s observation that the <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>’s first nontrivial <a class='existingWikiWord' href='/nlab/show/irreducible+representation'>irreducible representation</a> has <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a> 196883, and the <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi><mo stretchy='false'>(</mo><mi>τ</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>j(\tau)</annotation></semantics></math> has the <a class='existingWikiWord' href='/nlab/show/Fourier+transform'>Fourier series</a> expansion</p>
         2631 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi><mo stretchy='false'>(</mo><mi>τ</mi><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>744</mn><mo>+</mo><mn>196884</mn><mi>q</mi><mo>+</mo><mn>21493760</mn><msup><mi>q</mi> <mn>2</mn></msup><mo>+</mo><mi>…</mi></mrow><annotation encoding='application/x-tex'>
         2632   j(\tau) = q^{-1} + 744 + 196884q + 21493760q^{2} + \dots
         2633 
         2634 </annotation></semantics></math></div>
         2635 <p>where <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>q</mi><mo>=</mo><mi>exp</mi><mo stretchy='false'>(</mo><mi>i</mi><mn>2</mn><mi>π</mi><mi>τ</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>q=\exp(i2\pi\tau)</annotation></semantics></math>, and famously 196883+1=196884. Thompson observed in (1979) that the other coefficients are obtained from the dimensions of Monster’s irreducible representations.</p>
         2636 
         2637 <p>But the monster was merely <em>conjectured</em> to exist until Griess (1982) explicitly constructed it. The construction is horribly complicated (take the sum of three irreducible representations for the <a class='existingWikiWord' href='/nlab/show/centralizer'>centralizer</a> of an <a class='existingWikiWord' href='/nlab/show/involution'>involution</a> of…).</p>
         2638 
         2639 <p><a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a> constructed an infinite-dimensional <a class='existingWikiWord' href='/nlab/show/module'>module</a> for the <a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex algebra</a>. This is by a generalized <a class='existingWikiWord' href='/nlab/show/Kac-Moody+algebra'>Kac-Moody algebra</a> via <a class='existingWikiWord' href='/nlab/show/bosonic+string+theory'>bosonic string theory</a> and the <a class='existingWikiWord' href='/nlab/show/Goddard-Thorn+theorem'>Goddard-Thorn &quot;No Ghost&quot; theorem</a>. The <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a> acts naturally on this “Moonshine Module” (denoted by <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>V</mi><mo>♮</mo></mrow><annotation encoding='application/x-tex'>V\natural</annotation></semantics></math>).</p>
         2640 
         2641 <p>To cut the story short, we end up getting from the Monster group to a module it acts on which is related to “modular stuff” (namely, the modular <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a>). The idea <a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a> pitches is that Moonshine is a generalization of this association, it’s a sort of “mapping” from “Algebraic gadgets” to “Modular stuff”.</p>
         2642 
         2643 <h2 id='AutomorphismGroupsOfVertexOperatorAlgebras'>Automorphism groups of vertex operator algebras</h2>
         2644 
         2645 <p>Realizations of <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a> as <span class='newWikiWord'>automorphism groups of vertex operator algebras<a href='/nlab/new/automorphism+groups+of+vertex+operator+algebras'>?</a></span> in <a class='existingWikiWord' href='/nlab/show/heterotic+string+theory'>heterotic string theory</a> and <a class='existingWikiWord' href='/nlab/show/type+II+string+theory'>type II string theory</a> (mostly on <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a>, see <a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>HET - II duality</a>):</p>
         2646 
         2647 <ul>
         2648 <li>
         2649 <p>The <a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Co</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>Co_{0}</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a super VOA</a> of the unique chiral <a class='existingWikiWord' href='/nlab/show/number+of+supersymmetries'>N=1</a> <a class='existingWikiWord' href='/nlab/show/super+vertex+operator+algebra'>super vertex operator algebra</a> of <a class='existingWikiWord' href='/nlab/show/central+charge'>central charge</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>=</mo><mn>12</mn></mrow><annotation encoding='application/x-tex'>c = 12</annotation></semantics></math> without fields of <a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal weight</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1/2</annotation></semantics></math></p>
         2650 
         2651 <p>(<a href='#Duncan05'>Duncan 05</a>, see also <a href='#PaquettePerssonVolpato17'>Paquette-Persson-Volpato 17, p. 9</a>)</p>
         2652 </li>
         2653 
         2654 <li>
         2655 <p>similarly, there is a super VOA, the <em><a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex operator algebra</a></em>, whose <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> of <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a VOA</a> is the <a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p>
         2656 
         2657 <p>(<a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a>, <a href='#GriessLam11'>Griess-Lam 11</a>)</p>
         2658 </li>
         2659 </ul>
         2660 
         2661 <h2 id='related_concepts'>Related concepts</h2>
         2662 
         2663 <ul>
         2664 <li>
         2665 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster</a></p>
         2666 </li>
         2667 
         2668 <li>
         2669 <p>moonshine</p>
         2670 
         2671 <ul>
         2672 <li>
         2673 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p>
         2674 </li>
         2675 
         2676 <li>
         2677 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p>
         2678 </li>
         2679 
         2680 <li>
         2681 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O&#39;Nan moonshine</a></p>
         2682 </li>
         2683 </ul>
         2684 </li>
         2685 
         2686 <li>
         2687 <p><a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphism of a vertex operator algebra</a></p>
         2688 </li>
         2689 </ul>
         2690 
         2691 <h2 id='references'>References</h2>
         2692 
         2693 <h3 id='general'>General</h3>
         2694 
         2695 <ul>
         2696 <li>
         2697 <p><a class='existingWikiWord' href='/nlab/show/Richard+Borcherds'>Richard Borcherds</a>, <em>What is Moonshine?, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998).</em>Doc. Math._ 1998, Extra Vol. I, 607–615 (electronic). <a href='http://www.ams.org/mathscinet-getitem?mr=1660657'>MR1660657</a> <a href='http://arxiv.org/abs/math/9809110'>arXiv:math/9809110v1</a> [math.QA]</p>
         2698 </li>
         2699 
         2700 <li>
         2701 <p>John F. R. Duncan, Michael J. Griffin, Ken Ono, <em>Moonshine</em> (<a href='http://arxiv.org/abs/1411.6571'>arXiv:1411.6571</a>)</p>
         2702 </li>
         2703 
         2704 <li id='GriessLam11'>
         2705 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> Jr., Ching Hung Lam, <em>A new existence proof of the Monster by VOA theory</em> (<a href='https://arxiv.org/abs/1103.1414'>arXiv:1103.1414</a>)</p>
         2706 </li>
         2707 
         2708 <li id='FrenkelLepowskiMeurman89'>
         2709 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, <em>Vertex operator algebras and the monster</em>, Pure and Applied Mathematics <strong>134</strong>, Academic Press, New York 1989. liv+508 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=996026'>MR0996026</a></p>
         2710 </li>
         2711 
         2712 <li>
         2713 <p><a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a>, <em>Monstrous moonshine: the first twenty-five years</em>, <em>Bull. London Math. Soc.</em> <strong>38</strong> (2006), no. 1, 1–33. <a href='http://www.ams.org/mathscinet-getitem?mr=2201600'>MR2201600</a> <a href='http://arxiv.org/abs/math/0402345'>arXiv:math/0402345</a> [math.QA]</p>
         2714 </li>
         2715 
         2716 <li>
         2717 <p><a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a>, <em>Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics</em>, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, Massachusetts 2006. <a href='http://www.ams.org/mathscinet-getitem?mr=2257727'>MR2257727</a></p>
         2718 </li>
         2719 
         2720 <li>
         2721 <p>Koichiro Harada, <em>“Moonshine” of finite groups</em>. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2010. viii+76 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=2722318'>MR2722318</a></p>
         2722 </li>
         2723 
         2724 <li>
         2725 <p>Griess, Robert L., Jr.; Lam, Ching Hung <em>A moonshine path from E8 to the Monster</em>, J. Pure Appl. Algebra_ 215 (2011), no. 5, 927–948 <a href='http://www.ams.org/mathscinet-getitem?mr=2747229'>MR2747229</a> <a href='http://arxiv.org/abs/0910.2057v2'>arXiv:0910.2057v2</a> [math.GR]</p>
         2726 </li>
         2727 
         2728 <li>
         2729 <p>Jae-Hyun Yang “Kac-Moody algebras, the Monstrous Moonshine, Jacobi forms and infinite products.” <em>Number theory, geometry and related topics</em> (Iksan City, 1995), 13–82, Pyungsan Inst. Math. Sci., Seoul, 1996. <a href='http://www.ams.org/mathscinet-getitem?mr=1404967'>MR1404967</a> <a href='http://arxiv.org/abs/math/0612474'>arXiv:math/0612474v2</a> [math.NT]</p>
         2730 </li>
         2731 
         2732 <li>
         2733 <p>Vassilis Anagiannis, <a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, <em>TASI Lectures on Moonshine</em> (<a href='https://arxiv.org/abs/1807.00723'>arXiv:1807.00723</a>)</p>
         2734 </li>
         2735 </ul>
         2736 
         2737 <h3 id='historical_references'>Historical References</h3>
         2738 
         2739 <ul>
         2740 <li>
         2741 <p><a class='existingWikiWord' href='/nlab/show/John+Horton+Conway'>John Conway</a> and Simon Norton, “Monstrous moonshine.” <em>Bull. London Math. Soc.</em> <strong>11</strong> (1979), no. 3, 308–339; <a href='http://www.ams.org/mathscinet-getitem?mr=554399'>MR0554399</a> (81j:20028)</p>
         2742 </li>
         2743 
         2744 <li id='FrenkelLepowskiMeurman89'>
         2745 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, “A natural representation of the Fischer-Griess Monster with the modular function <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>J</mi></mrow><annotation encoding='application/x-tex'>J</annotation></semantics></math> as character.” <em>Proc. Nat. Acad. Sci. U.S.A.</em> <strong>81</strong> (1984), no. 10, Phys. Sci., 3256–3260. <a href='http://www.ams.org/mathscinet-getitem?mr=747596'>MR0747596</a> (85e:20018)</p>
         2746 </li>
         2747 
         2748 <li>
         2749 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a>, “The friendly giant.” <em>Invent. Math.</em> <strong>69</strong> (1982), no. 1, 1–102. <a href='http://www.ams.org/mathscinet-getitem?mr=671653'>MR671653</a> (84m:20024)</p>
         2750 </li>
         2751 
         2752 <li>
         2753 <p>John G. Thompson, “Some numerology between the Fischer-Griess Monster and the elliptic modular function.” <em>Bull. London Math. Soc.</em> <strong>11</strong> (1979), no. 3, 352–353. <a href='http://www.ams.org/mathscinet-getitem?mr=554402'>MR0554402</a> (81j:20030)</p>
         2754 </li>
         2755 </ul>
         2756 
         2757 <h3 id='FurtherDevelomentsReferences'>Further developments</h3>
         2758 
         2759 <ul>
         2760 <li>
         2761 <p><a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, John F. R. Duncan, Jeffrey A. Harvey, <em>Umbral Moonshine</em> (<a href='http://arxiv.org/abs/1204.2779'>arXiv:1204.2779</a>)</p>
         2762 </li>
         2763 
         2764 <li>
         2765 <p>John F. R. Duncan, Michael J. Griffin and Ken Ono, <em>Proof of the Umbral Moonshine Conjecture</em> (<a href='http://arxiv.org/abs/1503.01472'>arXiv:1503.01472</a>)</p>
         2766 </li>
         2767 
         2768 <li>
         2769 <p><a class='existingWikiWord' href='/nlab/show/Scott+Carnahan'>Scott Carnahan</a>, <em>Monstrous Moonshine over Z?</em> (<a href='https://arxiv.org/abs/1804.04161'>arXiv:1804.04161</a>)</p>
         2770 </li>
         2771 </ul>
         2772 
         2773 <h3 id='realization_in_superstring_theory'>Realization in superstring theory</h3>
         2774 
         2775 <p>Discussion of possible realizations in <a class='existingWikiWord' href='/nlab/show/string+theory'>superstring theory</a> (specifically <a class='existingWikiWord' href='/nlab/show/heterotic+string+theory'>heterotic string theory</a> and <a class='existingWikiWord' href='/nlab/show/type+II+string+theory'>type II string theory</a> in <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a>, see <a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>HET - II</a>) via <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of super vertex operator algebras</a>:</p>
         2776 
         2777 <ul>
         2778 <li>
         2779 <p>S. Chaudhuri, D.A. Lowe, <em>Monstrous String-String Duality</em>, Nucl. Phys. B469 : 21-36, 1996 (<a href='https://arxiv.org/abs/hep-th/9512226'>arXiv:hep-th/9512226</a>)</p>
         2780 </li>
         2781 
         2782 <li id='Duncan05'>
         2783 <p>John F. Duncan, <em>Super-moonshine for Conway’s largest sporadic group</em> (<a href='https://arxiv.org/abs/math/0502267'>arXiv:math/0502267</a>)</p>
         2784 </li>
         2785 
         2786 <li id='PaquettePerssonVolpato16'>
         2787 <p><a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Daniel Persson, Roberto Volpato, <em>Monstrous BPS-Algebras and the Superstring Origin of Moonshine</em> (<a href='http://arxiv.org/abs/1601.05412'>arXiv:1601.05412</a>)</p>
         2788 </li>
         2789 
         2790 <li id='KachruPaquetteVolpato16'>
         2791 <p><a class='existingWikiWord' href='/nlab/show/Shamit+Kachru'>Shamit Kachru</a>, <a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Roberto Volpato, <em>3D String Theory and Umbral Moonshine</em> (<a href='http://arxiv.org/abs/1603.07330'>arXiv:1603.07330</a>)</p>
         2792 </li>
         2793 
         2794 <li id='PaquettePerssonVolpato17'>
         2795 <p><a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Daniel Persson, Roberto Volpato, <em>BPS Algebras, Genus Zero, and the Heterotic Monster</em> (<a href='https://arxiv.org/abs/1701.05169'>arXiv:1701.05169</a>)</p>
         2796 </li>
         2797 
         2798 <li>
         2799 <p><a class='existingWikiWord' href='/nlab/show/Shamit+Kachru'>Shamit Kachru</a>, Arnav Tripathy, <em>The hidden symmetry of the heterotic string</em> (<a href='https://arxiv.org/abs/1702.02572'>arXiv:1702.02572</a>)</p>
         2800 </li>
         2801 </ul>
         2802 
         2803 <p>Specifically in relation to <a class='existingWikiWord' href='/nlab/show/Kaluza-Klein+mechanism'>KK-compactifications</a> of <a class='existingWikiWord' href='/nlab/show/string+theory'>string theory</a> on <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a> (<a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>duality between heterotic and type II string theory</a>)</p>
         2804 
         2805 <ul>
         2806 <li id='ChengHarrisonVolpatoZimet16'><a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, Sarah M. Harrison, Roberto Volpato, Max Zimet, <em>K3 String Theory, Lattices and Moonshine</em> (<a href='https://arxiv.org/abs/1612.04404'>arXiv:1612.04404</a>, <a href='https://doi.org/10.1007/s40687-018-0150-4'>doi:10.1007/s40687-018-0150-4</a>)</li>
         2807 </ul>
         2808 
         2809 <p>Possible relation to <a class='existingWikiWord' href='/nlab/show/bosonic+M-theory'>bosonic M-theory</a>:</p>
         2810 
         2811 <ul>
         2812 <li><a class='existingWikiWord' href='/nlab/show/Alessio+Marrani'>Alessio Marrani</a>, <a class='existingWikiWord' href='/nlab/show/Michael+Rios'>Michael Rios</a>, <a class='existingWikiWord' href='/nlab/show/David+Chester'>David Chester</a>, <em>Monstrous M-theory</em> (<a href='https://arxiv.org/abs/2008.06742'>arXiv:2008.06742</a>)</li>
         2813 </ul>
         2814 
         2815 <p>
         2816  
         2817 </p>
         2818 
         2819 <p>
         2820  
         2821 </p>
         2822 
         2823 <p>
         2824  
         2825 </p>      </div>
         2826     </content>
         2827   </entry>
         2828   <entry>
         2829     <title type="html">geometric realization of categories</title>
         2830     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/geometric+realization+of+categories"/>
         2831     <updated>2021-07-01T17:07:36Z</updated>
         2832     <published>2011-05-30T18:19:35Z</published>
         2833     <id>tag:ncatlab.org,2011-05-30:nLab,geometric+realization+of+categories</id>
         2834     <author>
         2835       <name>Dmitri Pavlov</name>
         2836     </author>
         2837     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/geometric+realization+of+categories">
         2838       <div xmlns="http://www.w3.org/1999/xhtml">
         2839 <div class='rightHandSide'>
         2840 <div class='toc clickDown' tabindex='0'>
         2841 <h3 id='context'>Context</h3>
         2842 
         2843 <h4 id='homotopy_theory'>Homotopy theory</h4>
         2844 
         2845 <div class='hide'>
         2846 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p>
         2847 
         2848 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p>
         2849 
         2850 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p>
         2851 
         2852 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p>
         2853 
         2854 <p><strong>Introductions</strong></p>
         2855 
         2856 <ul>
         2857 <li>
         2858 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p>
         2859 </li>
         2860 
         2861 <li>
         2862 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p>
         2863 </li>
         2864 
         2865 <li>
         2866 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p>
         2867 </li>
         2868 </ul>
         2869 
         2870 <p><strong>Definitions</strong></p>
         2871 
         2872 <ul>
         2873 <li>
         2874 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p>
         2875 </li>
         2876 
         2877 <li>
         2878 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p>
         2879 </li>
         2880 
         2881 <li>
         2882 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p>
         2883 </li>
         2884 
         2885 <li>
         2886 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p>
         2887 
         2888 <ul>
         2889 <li>
         2890 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p>
         2891 
         2892 <ul>
         2893 <li>
         2894 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p>
         2895 </li>
         2896 
         2897 <li>
         2898 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p>
         2899 </li>
         2900 
         2901 <li>
         2902 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p>
         2903 </li>
         2904 </ul>
         2905 </li>
         2906 
         2907 <li>
         2908 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p>
         2909 
         2910 <ul>
         2911 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li>
         2912 </ul>
         2913 </li>
         2914 </ul>
         2915 </li>
         2916 
         2917 <li>
         2918 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p>
         2919 
         2920 <ul>
         2921 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li>
         2922 </ul>
         2923 </li>
         2924 </ul>
         2925 
         2926 <p><strong>Paths and cylinders</strong></p>
         2927 
         2928 <ul>
         2929 <li>
         2930 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p>
         2931 
         2932 <ul>
         2933 <li>
         2934 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p>
         2935 </li>
         2936 
         2937 <li>
         2938 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p>
         2939 </li>
         2940 </ul>
         2941 </li>
         2942 
         2943 <li>
         2944 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p>
         2945 
         2946 <ul>
         2947 <li>
         2948 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p>
         2949 </li>
         2950 
         2951 <li>
         2952 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p>
         2953 </li>
         2954 
         2955 <li>
         2956 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p>
         2957 </li>
         2958 </ul>
         2959 </li>
         2960 
         2961 <li>
         2962 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p>
         2963 
         2964 <ul>
         2965 <li>
         2966 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p>
         2967 </li>
         2968 
         2969 <li>
         2970 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p>
         2971 </li>
         2972 </ul>
         2973 </li>
         2974 </ul>
         2975 
         2976 <p><strong>Homotopy groups</strong></p>
         2977 
         2978 <ul>
         2979 <li>
         2980 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p>
         2981 
         2982 <ul>
         2983 <li>
         2984 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p>
         2985 
         2986 <ul>
         2987 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li>
         2988 </ul>
         2989 </li>
         2990 
         2991 <li>
         2992 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p>
         2993 </li>
         2994 
         2995 <li>
         2996 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p>
         2997 </li>
         2998 
         2999 <li>
         3000 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p>
         3001 </li>
         3002 </ul>
         3003 </li>
         3004 
         3005 <li>
         3006 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p>
         3007 
         3008 <ul>
         3009 <li>
         3010 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p>
         3011 
         3012 <ul>
         3013 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li>
         3014 </ul>
         3015 </li>
         3016 
         3017 <li>
         3018 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p>
         3019 </li>
         3020 
         3021 <li>
         3022 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p>
         3023 </li>
         3024 </ul>
         3025 </li>
         3026 
         3027 <li>
         3028 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p>
         3029 
         3030 <ul>
         3031 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li>
         3032 </ul>
         3033 </li>
         3034 </ul>
         3035 
         3036 <p><strong>Basic facts</strong></p>
         3037 
         3038 <ul>
         3039 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li>
         3040 </ul>
         3041 
         3042 <p><strong>Theorems</strong></p>
         3043 
         3044 <ul>
         3045 <li>
         3046 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p>
         3047 </li>
         3048 
         3049 <li>
         3050 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p>
         3051 </li>
         3052 
         3053 <li>
         3054 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p>
         3055 </li>
         3056 
         3057 <li>
         3058 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p>
         3059 </li>
         3060 
         3061 <li>
         3062 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p>
         3063 </li>
         3064 
         3065 <li>
         3066 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead&#39;s theorem</a></p>
         3067 </li>
         3068 
         3069 <li>
         3070 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p>
         3071 </li>
         3072 
         3073 <li>
         3074 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p>
         3075 </li>
         3076 
         3077 <li>
         3078 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p>
         3079 </li>
         3080 </ul>
         3081 </div>
         3082 
         3083 <h4 id='category_theory'>Category theory</h4>
         3084 
         3085 <div class='hide'>
         3086 <p><strong><a class='existingWikiWord' href='/nlab/show/category+theory'>category theory</a></strong></p>
         3087 
         3088 <h2 id='concepts'>Concepts</h2>
         3089 
         3090 <ul>
         3091 <li>
         3092 <p><a class='existingWikiWord' href='/nlab/show/category'>category</a></p>
         3093 </li>
         3094 
         3095 <li>
         3096 <p><a class='existingWikiWord' href='/nlab/show/functor'>functor</a></p>
         3097 </li>
         3098 
         3099 <li>
         3100 <p><a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a></p>
         3101 </li>
         3102 
         3103 <li>
         3104 <p><a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a></p>
         3105 </li>
         3106 </ul>
         3107 
         3108 <h2 id='universal_constructions'>Universal constructions</h2>
         3109 
         3110 <ul>
         3111 <li>
         3112 <p><a class='existingWikiWord' href='/nlab/show/universal+construction'>universal construction</a></p>
         3113 
         3114 <ul>
         3115 <li>
         3116 <p><a class='existingWikiWord' href='/nlab/show/representable+functor'>representable functor</a></p>
         3117 </li>
         3118 
         3119 <li>
         3120 <p><a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functor</a></p>
         3121 </li>
         3122 
         3123 <li>
         3124 <p><a class='existingWikiWord' href='/nlab/show/limit'>limit</a>/<a class='existingWikiWord' href='/nlab/show/colimit'>colimit</a></p>
         3125 </li>
         3126 
         3127 <li>
         3128 <p><a class='existingWikiWord' href='/nlab/show/weighted+limit'>weighted limit</a></p>
         3129 </li>
         3130 
         3131 <li>
         3132 <p><a class='existingWikiWord' href='/nlab/show/end'>end</a>/<a class='existingWikiWord' href='/nlab/show/end'>coend</a></p>
         3133 </li>
         3134 
         3135 <li>
         3136 <p><a class='existingWikiWord' href='/nlab/show/Kan+extension'>Kan extension</a></p>
         3137 </li>
         3138 </ul>
         3139 </li>
         3140 </ul>
         3141 
         3142 <h2 id='theorems'>Theorems</h2>
         3143 
         3144 <ul>
         3145 <li>
         3146 <p><a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a></p>
         3147 </li>
         3148 
         3149 <li>
         3150 <p><a class='existingWikiWord' href='/nlab/show/Isbell+duality'>Isbell duality</a></p>
         3151 </li>
         3152 
         3153 <li>
         3154 <p><a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck construction</a></p>
         3155 </li>
         3156 
         3157 <li>
         3158 <p><a class='existingWikiWord' href='/nlab/show/adjoint+functor+theorem'>adjoint functor theorem</a></p>
         3159 </li>
         3160 
         3161 <li>
         3162 <p><a class='existingWikiWord' href='/nlab/show/monadicity+theorem'>monadicity theorem</a></p>
         3163 </li>
         3164 
         3165 <li>
         3166 <p><a class='existingWikiWord' href='/nlab/show/adjoint+lifting+theorem'>adjoint lifting theorem</a></p>
         3167 </li>
         3168 
         3169 <li>
         3170 <p><a class='existingWikiWord' href='/nlab/show/Tannaka+duality'>Tannaka duality</a></p>
         3171 </li>
         3172 
         3173 <li>
         3174 <p><a class='existingWikiWord' href='/nlab/show/Gabriel-Ulmer+duality'>Gabriel-Ulmer duality</a></p>
         3175 </li>
         3176 
         3177 <li>
         3178 <p><a class='existingWikiWord' href='/nlab/show/small+object+argument'>small object argument</a></p>
         3179 </li>
         3180 
         3181 <li>
         3182 <p><a class='existingWikiWord' href='/nlab/show/Freyd-Mitchell+embedding+theorem'>Freyd-Mitchell embedding theorem</a></p>
         3183 </li>
         3184 
         3185 <li>
         3186 <p><a class='existingWikiWord' href='/nlab/show/relation+between+type+theory+and+category+theory'>relation between type theory and category theory</a></p>
         3187 </li>
         3188 </ul>
         3189 
         3190 <h2 id='extensions'>Extensions</h2>
         3191 
         3192 <ul>
         3193 <li>
         3194 <p><a class='existingWikiWord' href='/nlab/show/sheaf+and+topos+theory'>sheaf and topos theory</a></p>
         3195 </li>
         3196 
         3197 <li>
         3198 <p><a class='existingWikiWord' href='/nlab/show/enriched+category+theory'>enriched category theory</a></p>
         3199 </li>
         3200 
         3201 <li>
         3202 <p><a class='existingWikiWord' href='/nlab/show/higher+category+theory'>higher category theory</a></p>
         3203 </li>
         3204 </ul>
         3205 
         3206 <h2 id='applications'>Applications</h2>
         3207 
         3208 <ul>
         3209 <li><a class='existingWikiWord' href='/nlab/show/applications+of+%28higher%29+category+theory'>applications of (higher) category theory</a></li>
         3210 </ul>
         3211 <div>
         3212 <p>
         3213   <a href='/nlab/edit/category+theory+-+contents'>Edit this sidebar</a>
         3214 </p>
         3215 </div></div>
         3216 </div>
         3217 </div>
         3218 
         3219 <h1 id='contents'>Contents</h1>
         3220 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#ThomasonModelStructure'>Thomason model structure</a></li><li><a href='#recognizing_weak_equivalences_quillens_theorem_a_and_b'>Recognizing weak equivalences: Quillen’s theorem A and B</a></li><li><a href='#natural_transformations_and_homotopies'>Natural transformations and homotopies</a></li><li><a href='#behaviour_under_homotopy_colimits'>Behaviour under homotopy colimits</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a><ul><li><a href='#general'>General</a></li><li><a href='#quillens_theorems_a_and_b'>Quillen’s theorems A and B</a></li></ul></li></ul></div>
         3221 <h2 id='idea'>Idea</h2>
         3222 
         3223 <p>What is called <em>geometric realization of categories</em> is a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> that sends <a class='existingWikiWord' href='/nlab/show/category'>categories</a> to <a class='existingWikiWord' href='/nlab/show/topological+space'>topological spaces</a>, namely the functor which first forms the <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> that is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of the category <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math>, and then forms the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(\mathcal{C})\vert}</annotation></semantics></math> of this simplical set. Typically one is interested in this geometric realization up to <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a>.</p>
         3224 
         3225 <p>By the <a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of simplicial sets constitutes a (<a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen</a>)<a class='existingWikiWord' href='/nlab/show/equivalence+of+%28infinity%2C1%29-categories'>equivalence</a> between the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical homotopy theory of simiplicial sets</a> and the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical homotopy theory of topological spaces</a>. This means that inasmuch as one is interested in geometric realization of categories up to weak homotopy equivalence, then the key part of the operation is in forming the simplicial nerve <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> of a category, with the latter regarded as a model for an <a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>∞-groupoid</a>. Indeed, equivalently one could consider the <a class='existingWikiWord' href='/nlab/show/Kan+fibrant+replacement'>Kan fibrant replacement</a> of the nerve <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> (which still has the same geometric realization, up to weak homotopy equivalence).</p>
         3226 
         3227 <p>Therefore an equivalent perspective on geometric realization of categories is that it universally turns a category into an <a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>infinity-groupoid</a> by freely turning all its morphisms into <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>homotopy equivalences</a>.</p>
         3228 
         3229 <p>Geometric realization of categories has various good properties:</p>
         3230 
         3231 <p>It sends <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalences of categories</a> to <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a> (corollary <a class='maruku-ref' href='#RealizationOfEquivalenceIsHomotopyEquivalence'>1</a> below). A more general sufficient criterion for the geometric realization of a functor is given by the seminal theorem known as <em>Quillen’s theorem A</em> (theorem <a class='maruku-ref' href='#QuillenTheoremA'>1</a> below.)</p>
         3232 
         3233 <p>The existence of the <a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a> (<a href='#ThomasonModelStructure'>below</a>) implies that every <a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a> arises as the geometric realization of some category. In fact it already arises as the geometric realization of some <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a> (<a class='existingWikiWord' href='/nlab/show/%280%2C1%29-category'>(0,1)-category</a>).</p>
         3234 
         3235 <h2 id='definition'>Definition</h2>
         3236 
         3237 <p>Write</p>
         3238 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo lspace='verythinmathspace'>:</mo><mi>Cat</mi><mo>→</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>
         3239   N \colon Cat \to sSet
         3240 
         3241 </annotation></semantics></math></div>
         3242 <p>for the <a href='nerve#NerveOfACategory'>nerve functor</a> from <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a> to <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>. Write</p>
         3243 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mo>−</mo><mo stretchy='false'>|</mo></mrow><mo>:</mo><mi>sSet</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding='application/x-tex'>
         3244   {\vert - \vert} : sSet \to Top
         3245 
         3246 </annotation></semantics></math></div>
         3247 <p>for the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> from <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a> to <a class='existingWikiWord' href='/nlab/show/Top'>Top</a>.</p>
         3248 
         3249 <p>The <em>geometric realization of categories</em> is the <a class='existingWikiWord' href='/nlab/show/composition'>composite</a> of these two operations:</p>
         3250 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mo>−</mo><mo stretchy='false'>|</mo></mrow><mo>≔</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Cat</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding='application/x-tex'>
         3251   {\vert - \vert} \coloneqq {\vert N(-)\vert} \;\colon\; Cat \to Top
         3252 
         3253 </annotation></semantics></math></div>
         3254 <h2 id='properties'>Properties</h2>
         3255 
         3256 <h3 id='ThomasonModelStructure'>Thomason model structure</h3>
         3257 
         3258 <p>There is a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure on <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a> whose weak equivalences are those <a class='existingWikiWord' href='/nlab/show/functor'>functors</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math> which under <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> become weak equivalences in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a>, hence which become <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a>. This is called the <em><a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a></em>.</p>
         3259 
         3260 <p>The existence of the Thomas model structure implies that every <a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a> arises as the geometric realization of some category, in fact already as the realization of some <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a>/<a class='existingWikiWord' href='/nlab/show/%280%2C1%29-category'>(0,1)-category</a>:</p>
         3261 
         3262 <div class='num_defn' id='PosetOfSimplicesInNerveOfCategory'>
         3263 <h6 id='definition_2'>Definition</h6>
         3264 
         3265 <p>For <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/category'>category</a>, let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∇</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>\nabla C</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a> of <a class='existingWikiWord' href='/nlab/show/simplex'>simplices</a> in the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mi>C</mi></mrow><annotation encoding='application/x-tex'>N C</annotation></semantics></math>, ordered by inclusion.</p>
         3266 </div>
         3267 
         3268 <div class='num_prop'>
         3269 <h6 id='proposition'>Proposition</h6>
         3270 
         3271 <p>For every category <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> the poset <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∇</mo><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\nabla \mathcal{C}</annotation></semantics></math> from def. <a class='maruku-ref' href='#PosetOfSimplicesInNerveOfCategory'>1</a> has <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weakly homotopy equivalent</a> geometric realization</p>
         3272 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo>∇</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><msub><mo>≃</mo> <mi>wh</mi></msub><mrow><mo stretchy='false'>|</mo><mi>𝒞</mi><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         3273   {\vert N(\nabla \mathcal{C}) \vert} \simeq_{wh} {\vert \mathcal{C} \vert}  
         3274   \,.
         3275 
         3276 </annotation></semantics></math></div></div>
         3277 
         3278 <h3 id='recognizing_weak_equivalences_quillens_theorem_a_and_b'>Recognizing weak equivalences: Quillen’s theorem A and B</h3>
         3279 
         3280 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}, \mathcal{D}</annotation></semantics></math> be two <a class='existingWikiWord' href='/nlab/show/category'>categories</a> and let</p>
         3281 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒞</mi><mo>⟶</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>
         3282   F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D}
         3283 
         3284 </annotation></semantics></math></div>
         3285 <p>be a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> between them.</p>
         3286 
         3287 <div class='num_theorem' id='QuillenTheoremA'>
         3288 <h6 id='theorem'>Theorem</h6>
         3289 
         3290 <p><strong>(<a href='#Quillen72'>Quillen 72</a>, theorem A)</strong></p>
         3291 
         3292 <p>If for all <a class='existingWikiWord' href='/nlab/show/object'>objects</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>d \in \mathcal{D}</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F/d)\vert}</annotation></semantics></math> of the <a class='existingWikiWord' href='/nlab/show/comma+category'>comma category</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>F/d</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> (meaning that <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math> is a “homotopy <a class='existingWikiWord' href='/nlab/show/final+functor'>cofinal functor</a>”, hence a <a class='existingWikiWord' href='/nlab/show/final+%28infinity%2C1%29-functor'>cofinal (∞,1)-functor</a>), then</p>
         3293 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒟</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>
         3294   {\vert N(F) \vert}
         3295    \;\colon\; 
         3296   {\vert N(\mathcal{C}) \vert} 
         3297     \longrightarrow 
         3298   {\vert N(\mathcal{D}) \vert}  
         3299 
         3300 </annotation></semantics></math></div>
         3301 <p>is a <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a>.</p>
         3302 </div>
         3303 
         3304 <div class='num_theorem' id='QuillenTheoremB'>
         3305 <h6 id='theorem_2'>Theorem</h6>
         3306 
         3307 <p><strong>(<a href='#Quillen72'>Quillen 72</a> theorem B)</strong></p>
         3308 
         3309 <p>If for all <a class='existingWikiWord' href='/nlab/show/object'>objects</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>d \in \mathcal{D}</annotation></semantics></math> we have that <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F/d)\vert}</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weakly homotopy equivalent</a> to a given <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> and all morphisms <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo lspace='verythinmathspace'>:</mo><msub><mi>d</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>d</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>f \colon d_1 \to d_2</annotation></semantics></math> induce <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a> between these, then <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fiber</a> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F) \vert}</annotation></semantics></math>, hence we have a <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fiber sequence</a> (in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a>) of the form</p>
         3310 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mover><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mover><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒟</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         3311   X   
         3312     \longrightarrow
         3313   {\vert N(\mathcal{C}) \vert} 
         3314     \overset{\vert N(F) \vert }{\longrightarrow} 
         3315   {\vert N(\mathcal{D}) \vert}
         3316   \,.
         3317 
         3318 </annotation></semantics></math></div></div>
         3319 
         3320 <p>As a consequence:</p>
         3321 
         3322 <div class='num_prop'>
         3323 <h6 id='proposition_2'>Proposition</h6>
         3324 
         3325 <p><strong>(<a href='#McCord66'>McCord 66, theorem 6</a>, <a href='#Quillen78'>Quillen 78, prop. 1.6</a>)</strong></p>
         3326 
         3327 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}, \mathcal{D}</annotation></semantics></math> be <a class='existingWikiWord' href='/nlab/show/finite+set'>finite</a> <a class='existingWikiWord' href='/nlab/show/partial+order'>posets</a> and consider <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F \colon  \mathcal{C} \to \mathcal{D}</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a>.</p>
         3328 
         3329 <p>If for each element/object <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>y \in \mathcal{D}</annotation></semantics></math> its <a class='existingWikiWord' href='/nlab/show/preimage'>preimage</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo stretchy='false'>(</mo><mo stretchy='false'>{</mo><mi>y</mi><mo>′</mo><mo>∈</mo><mi>Y</mi><mo stretchy='false'>|</mo><mi>y</mi><mo>′</mo><mo>≤</mo><mi>y</mi><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>f^{-1}( \{ y&#39; \in Y \vert  y&#39; \leq y \})</annotation></semantics></math> has <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> geometric realization, then <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F)\vert}</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a>.</p>
         3330 </div>
         3331 
         3332 <p>An alternative proof is given in (<a href='#Barmak10'>Barmak 10</a>).</p>
         3333 
         3334 <h3 id='natural_transformations_and_homotopies'>Natural transformations and homotopies</h3>
         3335 
         3336 <div class='num_prop' id='NaturalTrafoMapsToHomotopy'>
         3337 <h6 id='proposition_3'>Proposition</h6>
         3338 
         3339 <p>A <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>η</mi><mo>:</mo><mi>F</mi><mo>⇒</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\eta : F \Rightarrow G</annotation></semantics></math> between two <a class='existingWikiWord' href='/nlab/show/functor'>functors</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo>,</mo><mi>G</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F, G : \mathcal{C} \to \mathcal{D}</annotation></semantics></math> induces under geometric realization a <a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a></p>
         3340 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>η</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo lspace='verythinmathspace'>:</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         3341   {|N(\eta)|} \colon {\vert N(F)\vert} \longrightarrow {\vert N(G) \vert}
         3342   \,.
         3343 
         3344 </annotation></semantics></math></div></div>
         3345 
         3346 <div class='proof'>
         3347 <h6 id='proof'>Proof</h6>
         3348 
         3349 <p>The natural transformation is equivalently a functor of the form</p>
         3350 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>η</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒞</mi><mo>×</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>→</mo><mn>1</mn><mo stretchy='false'>}</mo><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>
         3351   \eta \;\colon\; \mathcal{C} \times \{0 \to 1\} \to \mathcal{D}
         3352 
         3353 </annotation></semantics></math></div>
         3354 <p>out of the <a class='existingWikiWord' href='/nlab/show/product+category'>product category</a> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> with the <a class='existingWikiWord' href='/nlab/show/interval+category'>interval category</a>.</p>
         3355 
         3356 <p>Since <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> preserves <a class='existingWikiWord' href='/nlab/show/cartesian+product'>Cartesian products</a> (see there) we have that</p>
         3357 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo>×</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><msub><mo>≃</mo> <mi>iso</mi></msub><mspace width='thickmathspace'></mspace><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>×</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>→</mo><mn>1</mn><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>
         3358   {\vert N( \mathcal{C} \times \{0,1\} ) \vert} 
         3359     \;\simeq_{iso}\; 
         3360   {\vert N(\mathcal{C}) \vert} \times {\vert N(\{0 \to 1\}) \vert}
         3361 
         3362 </annotation></semantics></math></div>
         3363 <p>But this is a <a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a> in topological spaces, hence <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>η</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(\eta) \vert}</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a>.</p>
         3364 </div>
         3365 
         3366 <div class='num_cor' id='RealizationOfEquivalenceIsHomotopyEquivalence'>
         3367 <h6 id='corollary'>Corollary</h6>
         3368 
         3369 <p>An <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalence of categories</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>≃</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C} \simeq \mathcal{D}</annotation></semantics></math> induces a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> between their geometric realizations.</p>
         3370 </div>
         3371 
         3372 <div class='num_remark'>
         3373 <h6 id='remark'>Remark</h6>
         3374 
         3375 <p>The statement still remains true for a pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functor</a>s <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>⇆</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C} \leftrightarrows \mathcal{D}</annotation></semantics></math>.</p>
         3376 </div>
         3377 
         3378 <div class='num_remark'>
         3379 <h6 id='remark_2'>Remark</h6>
         3380 
         3381 <p>Notice that the converse is far from true: Very different categories can have geometric realizations that are (weakly) homotopy equivalent. This is because geometric realization implicitly involves <a class='existingWikiWord' href='/nlab/show/Kan+fibrant+replacement'>Kan fibrant replacement</a>: it freely turns morphisms into <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>equivalences</a>.</p>
         3382 </div>
         3383 
         3384 <div class='num_cor' id='RealizationWithTerminalObjectIsContractible'>
         3385 <h6 id='corollary_2'>Corollary</h6>
         3386 
         3387 <p>If a <a class='existingWikiWord' href='/nlab/show/category'>category</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> has an <a class='existingWikiWord' href='/nlab/show/initial+object'>initial object</a> or a <a class='existingWikiWord' href='/nlab/show/terminal+object'>terminal object</a>, then its geometric realization is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a>.</p>
         3388 </div>
         3389 
         3390 <div class='proof'>
         3391 <h6 id='proof_2'>Proof</h6>
         3392 
         3393 <p>Assume the case of a terminal object, the other case works <a class='existingWikiWord' href='/nlab/show/duality'>formally dually</a>. Write <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo></mrow><annotation encoding='application/x-tex'>*</annotation></semantics></math> for the terminal category.</p>
         3394 
         3395 <p>Then we have an equality of functors</p>
         3396 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Id</mi> <mo>*</mo></msub><mo>=</mo><mo stretchy='false'>(</mo><mo>*</mo><mover><mo>→</mo><mo>⊥</mo></mover><mi>C</mi><mo>→</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'>
         3397   Id_* = (* \stackrel{\bottom}{\to} C \to *)
         3398   \,,
         3399 
         3400 </annotation></semantics></math></div>
         3401 <p>where the first functor on the right picks the terminal object, and we have a <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a></p>
         3402 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Id</mi> <mi>C</mi></msub><mo>⇒</mo><mo stretchy='false'>(</mo><mi>C</mi><mo>→</mo><mo>*</mo><mover><mo>→</mo><mo>⊥</mo></mover><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         3403   Id_C \Rightarrow (C \to * \stackrel{\bottom}{\to} C)
         3404 
         3405 </annotation></semantics></math></div>
         3406 <p>whose components are the unique morphisms into the terminal object.</p>
         3407 
         3408 <p>By prop. <a class='maruku-ref' href='#NaturalTrafoMapsToHomotopy'>3</a> it follows that we have a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo><mo>→</mo><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo>*</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>\vert N(\mathcal{C}) \vert \to \vert N(\ast) \vert = \ast</annotation></semantics></math>.</p>
         3409 </div>
         3410 
         3411 <h3 id='behaviour_under_homotopy_colimits'>Behaviour under homotopy colimits</h3>
         3412 
         3413 <div class='num_prop'>
         3414 <h6 id='proposition_4'>Proposition</h6>
         3415 
         3416 <p>For <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒟</mi><mo>→</mo><mi>Cat</mi></mrow><annotation encoding='application/x-tex'>F \colon \mathcal{D} \to Cat</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a>, let</p>
         3417 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒟</mi><mover><mo>⟶</mo><mi>F</mi></mover><mi>Cat</mi><mover><mo>→</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mover><mi>Top</mi></mrow><annotation encoding='application/x-tex'>
         3418   {\vert N(F(-))\vert} 
         3419    \;\colon\; 
         3420   \mathcal{D} 
         3421     \overset{F}{\longrightarrow} 
         3422   Cat 
         3423    \stackrel{\vert N(-) \vert}{\to}
         3424   Top
         3425 
         3426 </annotation></semantics></math></div>
         3427 <p>be its postcomposition with geometric realization of categories</p>
         3428 
         3429 <p>Then we have a <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a></p>
         3430 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo>|</mo><mi>N</mi><mrow><mo>(</mo><mo>∫</mo><mi>F</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≃</mo><mi>hocolim</mi><mrow><mo stretchy='false'>|</mo><mi>F</mi><mo stretchy='false'>(</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>
         3431   {\left\vert N\left(\int F \right) \right\vert}
         3432     \simeq
         3433   hocolim {\vert F(N(-)) \vert}
         3434 
         3435 </annotation></semantics></math></div>
         3436 <p>exhibiting the <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a> in <a class='existingWikiWord' href='/nlab/show/Top'>Top</a> over <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><annotation encoding='application/x-tex'>\vert N(F (-)) \vert</annotation></semantics></math> as the geometric realization of the <a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck construction</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∫</mo><mi>F</mi></mrow><annotation encoding='application/x-tex'>\int F</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math>.</p>
         3437 </div>
         3438 
         3439 <p>This is due to (<a href='#Thomason79'>Thomason 79</a>).</p>
         3440 
         3441 <h2 id='related_concepts'>Related concepts</h2>
         3442 
         3443 <ul>
         3444 <li>
         3445 <p><a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a></p>
         3446 
         3447 <ul>
         3448 <li><strong>of categories</strong>, <a class='existingWikiWord' href='/nlab/show/geometric+realization+of+simplicial+topological+spaces'>of simplicial topological spaces</a>, <a class='existingWikiWord' href='/nlab/show/geometric+realization+of+cohesive+infinity-groupoids'>of cohesive ∞-groupoids</a></li>
         3449 </ul>
         3450 </li>
         3451 </ul>
         3452 
         3453 <h2 id='references'>References</h2>
         3454 
         3455 <h3 id='general'>General</h3>
         3456 
         3457 <p>For general references see also <em><a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a></em> and <em><a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a></em>.</p>
         3458 
         3459 <h3 id='quillens_theorems_a_and_b'>Quillen’s theorems A and B</h3>
         3460 
         3461 <p>The original articles are</p>
         3462 
         3463 <ul>
         3464 <li id='McCord66'>
         3465 <p><a class='existingWikiWord' href='/nlab/show/Michael+C.+McCord'>Michael C. McCord</a>, <em>Singular homology groups and homotopy groups of finite topological spaces</em>, Duke Math. J. 33 (1966), 465-474</p>
         3466 </li>
         3467 
         3468 <li id='Quillen72'>
         3469 <p><a class='existingWikiWord' href='/nlab/show/Daniel+Quillen'>Daniel Quillen</a>, <em>Higher algebraic K-theory, I: Higher K-theories</em> Lect. Notes in Math. 341 (1972), 85-1 (<a href='http://math.mit.edu/~hrm/kansem/quillen-higher-algebraic-k-theory.pdf'>pdf</a>)</p>
         3470 </li>
         3471 
         3472 <li id='Quillen78'>
         3473 <p><a class='existingWikiWord' href='/nlab/show/Daniel+Quillen'>Daniel Quillen</a>, <em>Homotopy properties of the poset of nontrivial p-subgroups of a group</em>, Adv. Math. 28 (1978), 101-128.</p>
         3474 </li>
         3475 </ul>
         3476 
         3477 <p>The geometric realization of <a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck constructions</a> has been analyzed in</p>
         3478 
         3479 <ul>
         3480 <li id='Thomason79'><a class='existingWikiWord' href='/nlab/show/Robert+Thomason'>R. W. Thomason</a>, <em>Homotopy colimits in the category of small categories</em> , Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91109.</li>
         3481 </ul>
         3482 
         3483 <p>Review is in</p>
         3484 
         3485 <ul>
         3486 <li id='Barmak10'><a class='existingWikiWord' href='/nlab/show/Jonathan+Barmak'>Jonathan Barmak</a>, <em>On Quillen’s Theorem A for posets</em>, Journal of Combinatorial Theory Series A, Volume 118 Issue 8, November, 2011 Pages 2445-2453 (<a href='http://arxiv.org/abs/1005.0538'>arXiv:1005.0538</a>)</li>
         3487 </ul>
         3488 
         3489 <p>Further development includes</p>
         3490 
         3491 <ul>
         3492 <li>
         3493 <p><a class='existingWikiWord' href='/nlab/show/Clark+Barwick'>Clark Barwick</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Kan'>Daniel Kan</a>, <em>A Quillen theorem <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math> for homotopy pullbacks</em> (<a href='http://arxiv.org/abs/1101.4879'>arXiv:1101.4879</a>)</p>
         3494 </li>
         3495 
         3496 <li>
         3497 <p><a class='existingWikiWord' href='/nlab/show/David+Michael+Roberts'>David Roberts</a>, <em><a class='existingWikiWord' href='/davidroberts/show/Theorem+A+for+topological+categories' title='davidroberts'>Theorem A for topological categories</a></em></p>
         3498 </li>
         3499 </ul>
         3500 
         3501 <p>
         3502 </p>
         3503 
         3504 <p>
         3505  
         3506  
         3507  
         3508  
         3509  
         3510  
         3511  
         3512 </p>      </div>
         3513     </content>
         3514   </entry>
         3515   <entry>
         3516     <title type="html">Borel model structure</title>
         3517     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Borel+model+structure"/>
         3518     <updated>2021-07-01T16:26:36Z</updated>
         3519     <published>2014-04-15T05:41:15Z</published>
         3520     <id>tag:ncatlab.org,2014-04-15:nLab,Borel+model+structure</id>
         3521     <author>
         3522       <name>Urs Schreiber</name>
         3523     </author>
         3524     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Borel+model+structure">
         3525       <div xmlns="http://www.w3.org/1999/xhtml">
         3526 <div class='rightHandSide'>
         3527 <div class='toc clickDown' tabindex='0'>
         3528 <h3 id='context'>Context</h3>
         3529 
         3530 <h4 id='model_category_theory'>Model category theory</h4>
         3531 
         3532 <div class='hide'>
         3533 <p><strong><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></strong></p>
         3534 
         3535 <h2 id='definitions'>Definitions</h2>
         3536 
         3537 <ul>
         3538 <li>
         3539 <p><a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a></p>
         3540 </li>
         3541 
         3542 <li>
         3543 <p><a class='existingWikiWord' href='/nlab/show/weak+factorization+system'>weak factorization system</a></p>
         3544 </li>
         3545 
         3546 <li>
         3547 <p><a class='existingWikiWord' href='/nlab/show/homotopy+%28as+an+operation%29'>homotopy</a></p>
         3548 
         3549 <ul>
         3550 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></li>
         3551 </ul>
         3552 </li>
         3553 
         3554 <li>
         3555 <p><a class='existingWikiWord' href='/nlab/show/small+object+argument'>small object argument</a></p>
         3556 </li>
         3557 
         3558 <li>
         3559 <p><a class='existingWikiWord' href='/nlab/show/resolution'>resolution</a></p>
         3560 </li>
         3561 </ul>
         3562 
         3563 <h2 id='morphisms'>Morphisms</h2>
         3564 
         3565 <ul>
         3566 <li>
         3567 <p><a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a></p>
         3568 
         3569 <ul>
         3570 <li>
         3571 <p><a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen equivalence</a></p>
         3572 </li>
         3573 
         3574 <li>
         3575 <p><a class='existingWikiWord' href='/nlab/show/Quillen+bifunctor'>Quillen bifunctor</a></p>
         3576 </li>
         3577 
         3578 <li>
         3579 <p><a class='existingWikiWord' href='/nlab/show/derived+functor'>derived functor</a></p>
         3580 </li>
         3581 </ul>
         3582 </li>
         3583 </ul>
         3584 
         3585 <h2 id='universal_constructions'>Universal constructions</h2>
         3586 
         3587 <ul>
         3588 <li>
         3589 <p><a class='existingWikiWord' href='/nlab/show/homotopy+Kan+extension'>homotopy Kan extension</a></p>
         3590 </li>
         3591 
         3592 <li>
         3593 <p><a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy limit</a>/<a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a></p>
         3594 </li>
         3595 
         3596 <li>
         3597 <p><a class='existingWikiWord' href='/nlab/show/Bousfield-Kan+map'>Bousfield-Kan map</a></p>
         3598 </li>
         3599 </ul>
         3600 
         3601 <h2 id='refinements'>Refinements</h2>
         3602 
         3603 <ul>
         3604 <li>
         3605 <p><a class='existingWikiWord' href='/nlab/show/monoidal+model+category'>monoidal model category</a></p>
         3606 
         3607 <ul>
         3608 <li><a class='existingWikiWord' href='/nlab/show/monoidal+Quillen+adjunction'>monoidal Quillen adjunction</a></li>
         3609 </ul>
         3610 </li>
         3611 
         3612 <li>
         3613 <p><a class='existingWikiWord' href='/nlab/show/enriched+model+category'>enriched model category</a></p>
         3614 
         3615 <ul>
         3616 <li><a class='existingWikiWord' href='/nlab/show/enriched+Quillen+adjunction'>enriched Quillen adjunction</a></li>
         3617 </ul>
         3618 </li>
         3619 
         3620 <li>
         3621 <p><a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a></p>
         3622 
         3623 <ul>
         3624 <li><a class='existingWikiWord' href='/nlab/show/simplicial+Quillen+adjunction'>simplicial Quillen adjunction</a></li>
         3625 </ul>
         3626 </li>
         3627 
         3628 <li>
         3629 <p><a class='existingWikiWord' href='/nlab/show/cofibrantly+generated+model+category'>cofibrantly generated model category</a></p>
         3630 
         3631 <ul>
         3632 <li>
         3633 <p><a class='existingWikiWord' href='/nlab/show/combinatorial+model+category'>combinatorial model category</a></p>
         3634 </li>
         3635 
         3636 <li>
         3637 <p><a class='existingWikiWord' href='/nlab/show/cellular+model+category'>cellular model category</a></p>
         3638 </li>
         3639 </ul>
         3640 </li>
         3641 
         3642 <li>
         3643 <p><a class='existingWikiWord' href='/nlab/show/algebraic+model+category'>algebraic model category</a></p>
         3644 </li>
         3645 
         3646 <li>
         3647 <p><a class='existingWikiWord' href='/nlab/show/compactly+generated+model+category'>compactly generated model category</a></p>
         3648 </li>
         3649 
         3650 <li>
         3651 <p><a class='existingWikiWord' href='/nlab/show/proper+model+category'>proper model category</a></p>
         3652 </li>
         3653 
         3654 <li>
         3655 <p><a class='existingWikiWord' href='/nlab/show/cartesian+model+category'>cartesian closed model category</a>, <a class='existingWikiWord' href='/nlab/show/locally+cartesian+closed+model+category'>locally cartesian closed model category</a></p>
         3656 </li>
         3657 
         3658 <li>
         3659 <p><a class='existingWikiWord' href='/nlab/show/stable+model+category'>stable model category</a></p>
         3660 </li>
         3661 </ul>
         3662 
         3663 <h2 id='producing_new_model_structures'>Producing new model structures</h2>
         3664 
         3665 <ul>
         3666 <li>
         3667 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>on functor categories (global)</a></p>
         3668 
         3669 <ul>
         3670 <li><a class='existingWikiWord' href='/nlab/show/Reedy+model+structure'>Reedy model structure</a></li>
         3671 </ul>
         3672 </li>
         3673 
         3674 <li>
         3675 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>on overcategories</a></p>
         3676 </li>
         3677 
         3678 <li>
         3679 <p><a class='existingWikiWord' href='/nlab/show/Bousfield+localization+of+model+categories'>Bousfield localization</a></p>
         3680 </li>
         3681 
         3682 <li>
         3683 <p><a class='existingWikiWord' href='/nlab/show/transferred+model+structure'>transferred model structure</a></p>
         3684 
         3685 <ul>
         3686 <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebraic+fibrant+objects'>model structure on algebraic fibrant objects</a></li>
         3687 </ul>
         3688 </li>
         3689 
         3690 <li>
         3691 <p><a class='existingWikiWord' href='/nlab/show/Grothendieck+construction+for+model+categories'>Grothendieck construction for model categories</a></p>
         3692 </li>
         3693 </ul>
         3694 
         3695 <h2 id='presentation_of_categories'>Presentation of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h2>
         3696 
         3697 <ul>
         3698 <li>
         3699 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p>
         3700 </li>
         3701 
         3702 <li>
         3703 <p><a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localization</a></p>
         3704 </li>
         3705 
         3706 <li>
         3707 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>(∞,1)-categorical hom-space</a></p>
         3708 </li>
         3709 
         3710 <li>
         3711 <p><a class='existingWikiWord' href='/nlab/show/locally+presentable+%28infinity%2C1%29-category'>presentable (∞,1)-category</a></p>
         3712 </li>
         3713 </ul>
         3714 
         3715 <h2 id='model_structures'>Model structures</h2>
         3716 
         3717 <ul>
         3718 <li><a class='existingWikiWord' href='/nlab/show/Cisinski+model+structure'>Cisinski model structure</a></li>
         3719 </ul>
         3720 
         3721 <h3 id='for_groupoids'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</h3>
         3722 
         3723 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+infinity-groupoids'>for ∞-groupoids</a></p>
         3724 
         3725 <ul>
         3726 <li>
         3727 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+topological+spaces'>on topological spaces</a></p>
         3728 
         3729 <ul>
         3730 <li>
         3731 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure</a></p>
         3732 </li>
         3733 
         3734 <li>
         3735 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+Delta-generated+topological+spaces'>on Delta-generated spaces</a></p>
         3736 </li>
         3737 
         3738 <li>
         3739 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+diffeological+spaces'>on diffeological spaces</a></p>
         3740 </li>
         3741 
         3742 <li>
         3743 <p><a class='existingWikiWord' href='/nlab/show/Str%C3%B8m+model+structure'>Strom model structure</a></p>
         3744 </li>
         3745 </ul>
         3746 </li>
         3747 
         3748 <li>
         3749 <p><a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a></p>
         3750 </li>
         3751 
         3752 <li>
         3753 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+over+a+test+category'>model structure on presheaves over a test category</a></p>
         3754 </li>
         3755 
         3756 <li>
         3757 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>on simplicial sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+semi-simplicial+sets'>on semi-simplicial sets</a></p>
         3758 
         3759 <ul>
         3760 <li>
         3761 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure</a></p>
         3762 </li>
         3763 
         3764 <li>
         3765 <p><a class='existingWikiWord' href='/nlab/show/constructive+model+structure+on+simplicial+sets'>constructive model structure</a></p>
         3766 </li>
         3767 
         3768 <li>
         3769 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+left+fibrations'>for right/left fibrations</a></p>
         3770 </li>
         3771 </ul>
         3772 </li>
         3773 
         3774 <li>
         3775 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groupoids'>model structure on simplicial groupoids</a></p>
         3776 </li>
         3777 
         3778 <li>
         3779 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cubical+sets'>on cubical sets</a></p>
         3780 </li>
         3781 
         3782 <li>
         3783 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-groupoids'>on strict ∞-groupoids</a>, <a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>on groupoids</a></p>
         3784 </li>
         3785 
         3786 <li>
         3787 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+chain+complexes'>on chain complexes</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+abelian+groups'>model structure on cosimplicial abelian groups</a></p>
         3788 
         3789 <p>related by the <a class='existingWikiWord' href='/nlab/show/Dold-Kan+correspondence'>Dold-Kan correspondence</a></p>
         3790 </li>
         3791 
         3792 <li>
         3793 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+simplicial+sets'>model structure on cosimplicial simplicial sets</a></p>
         3794 </li>
         3795 </ul>
         3796 
         3797 <h3 id='for_rational_groupoids'>for rational <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</h3>
         3798 
         3799 <ul>
         3800 <li>
         3801 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on dgc-algebras</a></p>
         3802 </li>
         3803 
         3804 <li>
         3805 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+dgc-algebras'>model structure on equivariant dgc-algebras</a></p>
         3806 
         3807 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+chain+complexes'>model structure on equivariant chain complexes</a></p>
         3808 </li>
         3809 </ul>
         3810 
         3811 <h3 id='for_groupoids_2'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-groupoids</h3>
         3812 
         3813 <ul>
         3814 <li>
         3815 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-groupoids</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-types</a></p>
         3816 </li>
         3817 
         3818 <li>
         3819 <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>for 1-groupoids</a></p>
         3820 </li>
         3821 </ul>
         3822 
         3823 <h3 id='for_groups'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groups</h3>
         3824 
         3825 <ul>
         3826 <li>
         3827 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groups'>model structure on simplicial groups</a></p>
         3828 </li>
         3829 
         3830 <li>
         3831 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+reduced+simplicial+sets'>model structure on reduced simplicial sets</a></p>
         3832 </li>
         3833 </ul>
         3834 
         3835 <h3 id='for_algebras'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-algebras</h3>
         3836 
         3837 <h4 id='general'>general</h4>
         3838 
         3839 <ul>
         3840 <li>
         3841 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+monoids+in+a+monoidal+model+category'>on monoids</a></p>
         3842 </li>
         3843 
         3844 <li>
         3845 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+algebras'>on simplicial T-algebras</a>, on <a class='existingWikiWord' href='/nlab/show/homotopy+T-algebra'>homotopy T-algebra</a>s</p>
         3846 </li>
         3847 
         3848 <li>
         3849 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+a+monad'>on algebas over a monad</a></p>
         3850 </li>
         3851 
         3852 <li>
         3853 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p>
         3854 </li>
         3855 </ul>
         3856 
         3857 <h4 id='specific'>specific</h4>
         3858 
         3859 <ul>
         3860 <li>
         3861 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on differential-graded commutative algebras</a></p>
         3862 </li>
         3863 
         3864 <li>
         3865 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+differential+graded-commutative+superalgebras'>model structure on differential graded-commutative superalgebras</a></p>
         3866 </li>
         3867 
         3868 <li>
         3869 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras+over+an+operad'>on dg-algebras over an operad</a></p>
         3870 
         3871 <ul>
         3872 <li>
         3873 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>on dg-algebras</a> and on <a class='existingWikiWord' href='/nlab/show/simplicial+ring'>on simplicial rings</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+rings'>on cosimplicial rings</a></p>
         3874 
         3875 <p>related by the <a class='existingWikiWord' href='/nlab/show/monoidal+Dold-Kan+correspondence'>monoidal Dold-Kan correspondence</a></p>
         3876 </li>
         3877 
         3878 <li>
         3879 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+L-infinity+algebras'>for L-∞ algebras</a>: <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-Lie+algebras'>on dg-Lie algebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-coalgebras'>on dg-coalgebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+Lie+algebras'>on simplicial Lie algebras</a></p>
         3880 </li>
         3881 </ul>
         3882 </li>
         3883 
         3884 <li>
         3885 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-modules'>model structure on dg-modules</a></p>
         3886 </li>
         3887 </ul>
         3888 
         3889 <h3 id='for_stablespectrum_objects'>for stable/spectrum objects</h3>
         3890 
         3891 <ul>
         3892 <li>
         3893 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+spectra'>model structure on spectra</a></p>
         3894 </li>
         3895 
         3896 <li>
         3897 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+ring+spectra'>model structure on ring spectra</a></p>
         3898 </li>
         3899 
         3900 <li>
         3901 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+spectra'>model structure on presheaves of spectra</a></p>
         3902 </li>
         3903 </ul>
         3904 
         3905 <h3 id='for_categories'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h3>
         3906 
         3907 <ul>
         3908 <li>
         3909 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+relative+categories'>on categories with weak equivalences</a></p>
         3910 </li>
         3911 
         3912 <li>
         3913 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+quasi-categories'>Joyal model for quasi-categories</a></p>
         3914 </li>
         3915 
         3916 <li>
         3917 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-categories'>on sSet-categories</a></p>
         3918 </li>
         3919 
         3920 <li>
         3921 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+complete+Segal+spaces'>for complete Segal spaces</a></p>
         3922 </li>
         3923 
         3924 <li>
         3925 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+Cartesian+fibrations'>for Cartesian fibrations</a></p>
         3926 </li>
         3927 </ul>
         3928 
         3929 <h3 id='for_stable_categories'>for stable <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h3>
         3930 
         3931 <ul>
         3932 <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-categories'>on dg-categories</a></li>
         3933 </ul>
         3934 
         3935 <h3 id='for_operads'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-operads</h3>
         3936 
         3937 <ul>
         3938 <li>
         3939 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+operads'>on operads</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+Segal+operads'>for Segal operads</a></p>
         3940 
         3941 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p>
         3942 </li>
         3943 
         3944 <li>
         3945 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dendroidal+sets'>on dendroidal sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+complete+Segal+spaces'>for dendroidal complete Segal spaces</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+Cartesian+fibrations'>for dendroidal Cartesian fibrations</a></p>
         3946 </li>
         3947 </ul>
         3948 
         3949 <h3 id='for_categories_2'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n,r)</annotation></semantics></math>-categories</h3>
         3950 
         3951 <ul>
         3952 <li>
         3953 <p><a class='existingWikiWord' href='/nlab/show/Theta-space'>for (n,r)-categories as ∞-spaces</a></p>
         3954 </li>
         3955 
         3956 <li>
         3957 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+weak+complicial+sets'>for weak ∞-categories as weak complicial sets</a></p>
         3958 </li>
         3959 
         3960 <li>
         3961 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cellular+sets'>on cellular sets</a></p>
         3962 </li>
         3963 
         3964 <li>
         3965 <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure'>on higher categories in general</a></p>
         3966 </li>
         3967 
         3968 <li>
         3969 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-categories'>on strict ∞-categories</a></p>
         3970 </li>
         3971 </ul>
         3972 
         3973 <h3 id='for_sheaves__stacks'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-sheaves / <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</h3>
         3974 
         3975 <ul>
         3976 <li>
         3977 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+homotopical+presheaves'>on homotopical presheaves</a></p>
         3978 
         3979 <ul>
         3980 <li>
         3981 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>on simplicial presheaves</a></p>
         3982 
         3983 <p><a class='existingWikiWord' href='/nlab/show/global+model+structure+on+simplicial+presheaves'>global model structure</a>/<a class='existingWikiWord' href='/nlab/show/%C4%8Cech+model+structure+on+simplicial+presheaves'>Cech model structure</a>/<a class='existingWikiWord' href='/nlab/show/local+model+structure+on+simplicial+presheaves'>local model structure</a></p>
         3984 
         3985 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sheaves'>on simplicial sheaves</a></p>
         3986 
         3987 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+simplicial+groupoids'>on presheaves of simplicial groupoids</a></p>
         3988 
         3989 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-enriched+presheaves'>on sSet-enriched presheaves</a></p>
         3990 </li>
         3991 </ul>
         3992 </li>
         3993 
         3994 <li>
         3995 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+%282%2C1%29-sheaves'>model structure for (2,1)-sheaves</a>/for stacks</p>
         3996 </li>
         3997 </ul>
         3998 <div>
         3999 <p>
         4000   <a href='/nlab/edit/model+category+theory+-+contents'>Edit this sidebar</a>
         4001 </p>
         4002 </div></div>
         4003 
         4004 <h4 id='group_theory'>Group Theory</h4>
         4005 
         4006 <div class='hide'>
         4007 <p><strong><a class='existingWikiWord' href='/nlab/show/group+theory'>group theory</a></strong></p>
         4008 
         4009 <ul>
         4010 <li><a class='existingWikiWord' href='/nlab/show/group'>group</a>, <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></li>
         4011 
         4012 <li><a class='existingWikiWord' href='/nlab/show/group+object'>group object</a>, <a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>group object in an (∞,1)-category</a></li>
         4013 
         4014 <li><a class='existingWikiWord' href='/nlab/show/abelian+group'>abelian group</a>, <a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></li>
         4015 
         4016 <li><a class='existingWikiWord' href='/nlab/show/action'>group action</a>, <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></li>
         4017 
         4018 <li><a class='existingWikiWord' href='/nlab/show/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/infinity-representation'>∞-representation</a></li>
         4019 
         4020 <li><a class='existingWikiWord' href='/nlab/show/progroup'>progroup</a></li>
         4021 
         4022 <li><a class='existingWikiWord' href='/nlab/show/homogeneous+space'>homogeneous space</a></li>
         4023 </ul>
         4024 
         4025 <h3 id='classical_groups'>Classical groups</h3>
         4026 
         4027 <ul>
         4028 <li>
         4029 <p><a class='existingWikiWord' href='/nlab/show/general+linear+group'>general linear group</a></p>
         4030 </li>
         4031 
         4032 <li>
         4033 <p><a class='existingWikiWord' href='/nlab/show/unitary+group'>unitary group</a></p>
         4034 
         4035 <ul>
         4036 <li><a class='existingWikiWord' href='/nlab/show/special+unitary+group'>special unitary group</a>. <a class='existingWikiWord' href='/nlab/show/projective+unitary+group'>projective unitary group</a></li>
         4037 </ul>
         4038 </li>
         4039 
         4040 <li>
         4041 <p><a class='existingWikiWord' href='/nlab/show/orthogonal+group'>orthogonal group</a></p>
         4042 
         4043 <ul>
         4044 <li><a class='existingWikiWord' href='/nlab/show/special+orthogonal+group'>special orthogonal group</a></li>
         4045 </ul>
         4046 </li>
         4047 
         4048 <li>
         4049 <p><a class='existingWikiWord' href='/nlab/show/symplectic+group'>symplectic group</a></p>
         4050 </li>
         4051 </ul>
         4052 
         4053 <h3 id='finite_groups'>Finite groups</h3>
         4054 
         4055 <ul>
         4056 <li>
         4057 <p><a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a></p>
         4058 </li>
         4059 
         4060 <li>
         4061 <p><a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>, <a class='existingWikiWord' href='/nlab/show/cyclic+group'>cyclic group</a>, <a class='existingWikiWord' href='/nlab/show/braid+group'>braid group</a></p>
         4062 </li>
         4063 
         4064 <li>
         4065 <p><a class='existingWikiWord' href='/nlab/show/classification+of+finite+simple+groups'>classification of finite simple groups</a></p>
         4066 </li>
         4067 
         4068 <li>
         4069 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a></p>
         4070 
         4071 <ul>
         4072 <li><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a></li>
         4073 </ul>
         4074 </li>
         4075 </ul>
         4076 
         4077 <h3 id='group_schemes'>Group schemes</h3>
         4078 
         4079 <ul>
         4080 <li><a class='existingWikiWord' href='/nlab/show/algebraic+group'>algebraic group</a></li>
         4081 
         4082 <li><a class='existingWikiWord' href='/nlab/show/abelian+variety'>abelian variety</a></li>
         4083 </ul>
         4084 
         4085 <h3 id='topological_groups'>Topological groups</h3>
         4086 
         4087 <ul>
         4088 <li>
         4089 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p>
         4090 </li>
         4091 
         4092 <li>
         4093 <p><a class='existingWikiWord' href='/nlab/show/compact+topological+group'>compact topological group</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+group'>locally compact topological group</a></p>
         4094 </li>
         4095 
         4096 <li>
         4097 <p><a class='existingWikiWord' href='/nlab/show/maximal+compact+subgroup'>maximal compact subgroup</a></p>
         4098 </li>
         4099 
         4100 <li>
         4101 <p><a class='existingWikiWord' href='/nlab/show/string+group'>string group</a></p>
         4102 </li>
         4103 </ul>
         4104 
         4105 <h3 id='lie_groups'>Lie groups</h3>
         4106 
         4107 <ul>
         4108 <li>
         4109 <p><a class='existingWikiWord' href='/nlab/show/Lie+group'>Lie group</a></p>
         4110 </li>
         4111 
         4112 <li>
         4113 <p><a class='existingWikiWord' href='/nlab/show/compact+Lie+group'>compact Lie group</a></p>
         4114 </li>
         4115 
         4116 <li>
         4117 <p><a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody group</a></p>
         4118 </li>
         4119 </ul>
         4120 
         4121 <h3 id='superlie_groups'>Super-Lie groups</h3>
         4122 
         4123 <ul>
         4124 <li>
         4125 <p><a class='existingWikiWord' href='/nlab/show/supergroup'>super Lie group</a></p>
         4126 </li>
         4127 
         4128 <li>
         4129 <p><a class='existingWikiWord' href='/nlab/show/super+Euclidean+group'>super Euclidean group</a></p>
         4130 </li>
         4131 </ul>
         4132 
         4133 <h3 id='higher_groups'>Higher groups</h3>
         4134 
         4135 <ul>
         4136 <li>
         4137 <p><a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a></p>
         4138 
         4139 <ul>
         4140 <li><a class='existingWikiWord' href='/nlab/show/crossed+module'>crossed module</a>, <a class='existingWikiWord' href='/nlab/show/strict+2-group'>strict 2-group</a></li>
         4141 </ul>
         4142 </li>
         4143 
         4144 <li>
         4145 <p><a class='existingWikiWord' href='/nlab/show/n-group'>n-group</a></p>
         4146 </li>
         4147 
         4148 <li>
         4149 <p><a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></p>
         4150 
         4151 <ul>
         4152 <li>
         4153 <p><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></p>
         4154 </li>
         4155 
         4156 <li>
         4157 <p><a class='existingWikiWord' href='/nlab/show/crossed+complex'>crossed complex</a></p>
         4158 </li>
         4159 
         4160 <li>
         4161 <p><a class='existingWikiWord' href='/nlab/show/k-tuply+groupal+n-groupoid'>k-tuply groupal n-groupoid</a></p>
         4162 </li>
         4163 
         4164 <li>
         4165 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p>
         4166 </li>
         4167 </ul>
         4168 </li>
         4169 
         4170 <li>
         4171 <p><a class='existingWikiWord' href='/nlab/show/circle+n-group'>circle n-group</a>, <a class='existingWikiWord' href='/nlab/show/string+2-group'>string 2-group</a>, <a class='existingWikiWord' href='/nlab/show/fivebrane+6-group'>fivebrane Lie 6-group</a></p>
         4172 </li>
         4173 </ul>
         4174 
         4175 <h3 id='cohomology_and_extensions'>Cohomology and Extensions</h3>
         4176 
         4177 <ul>
         4178 <li>
         4179 <p><a class='existingWikiWord' href='/nlab/show/group+cohomology'>group cohomology</a></p>
         4180 </li>
         4181 
         4182 <li>
         4183 <p><a class='existingWikiWord' href='/nlab/show/group+extension'>group extension</a>,</p>
         4184 </li>
         4185 
         4186 <li>
         4187 <p><a class='existingWikiWord' href='/nlab/show/infinity-group+extension'>∞-group extension</a>, <a class='existingWikiWord' href='/nlab/show/Ext'>Ext-group</a></p>
         4188 </li>
         4189 </ul>
         4190 
         4191 <h3 id='_related_concepts'>Related concepts</h3>
         4192 
         4193 <ul>
         4194 <li><a class='existingWikiWord' href='/nlab/show/quantum+group'>quantum group</a></li>
         4195 </ul>
         4196 <div>
         4197 <p>
         4198   <a href='/nlab/edit/group+theory+-+contents'>Edit this sidebar</a>
         4199 </p>
         4200 </div></div>
         4201 </div>
         4202 </div>
         4203 
         4204 <h1 id='contents'>Contents</h1>
         4205 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#CofibrantReplacementAndHomotopyQuotientsFixedPoints'>Cofibrant replacement and homotopy quotients/fixed points</a></li><li><a href='#RelationToSliceOverSimplicialClassifyingSpace'>Relation to the slice over the simplicial classifying space</a></li><li><a href='#RelationToModelStructureOnPlainSimplicialSets'>Relation to the model structure on plain simplicial sets</a></li><li><a href='#relation_to_the_fine_model_structure_of_equivariant_homotopy_theory'>Relation to the fine model structure of equivariant homotopy theory</a></li><li><a href='#GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</a></li></ul></li><li><a href='#references'>References</a></li></ul></div>
         4206 <h2 id='idea'>Idea</h2>
         4207 
         4208 <p>Given a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>, the <em>Borel model structure</em> is a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure on the <a class='existingWikiWord' href='/nlab/show/category'>category</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> equipped with <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> which presents the <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a> of <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-actions</a> of the <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a> (see there) presented by <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>.</p>
         4209 
         4210 <p>In the context of <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> this is also called the “coarse model structure” (e.g. <a href='#Guillou'>Guillou, section 5</a>), since it is not equivalent to the “fine” homotopy theory of <a class='existingWikiWord' href='/nlab/show/topological+G-space'>G-spaces</a> which enters <a class='existingWikiWord' href='/nlab/show/Elmendorf%27s+theorem'>Elmendorf&#39;s theorem</a>.</p>
         4211 
         4212 <h2 id='definition'>Definition</h2>
         4213 
         4214 <p>\begin{defn}\label{BorelModelStructure}</p>
         4215 
         4216 <p>For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> write</p>
         4217 
         4218 <ul>
         4219 <li>
         4220 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>\mathbf{B}G_\bullet</annotation></semantics></math> for the one-object <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-enriched category</a> (here: a <a class='existingWikiWord' href='/nlab/show/simplicial+groupoid'>simplicial groupoid</a>) whose <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a> is <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>.</p>
         4221 </li>
         4222 
         4223 <li>
         4224 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>G_\bullet Actions(sSet) \;\coloneqq\; sSetCat\big(\mathbf{B}G_\bullet, sSet\big)</annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor+category'>enriched functor category</a> to <a class='existingWikiWord' href='/nlab/show/SimpSet'>SimplicialSets</a>.</p>
         4225 </li>
         4226 
         4227 <li>
         4228 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><msub><mo stretchy='false'>)</mo> <mi>proj</mi></msub><mo>≔</mo><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>G_\bullet Acts(sSet)_{proj} \coloneqq sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> for the projective <a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>model structure on functors</a> (projective <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a>).</p>
         4229 </li>
         4230 </ul>
         4231 
         4232 <p>This is the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> <em>Borel model structure</em>, naturally a <a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a> (<a href='#DDK80'>DDK 80, Prop. 2.4</a>, <a href='#GoerssJardine09'>Goerss &amp; Jardine 09, Chapter V, Thm. 2.3</a>).</p>
         4233 
         4234 <p>\end{defn}</p>
         4235 
         4236 <h2 id='properties'>Properties</h2>
         4237 
         4238 <h3 id='CofibrantReplacementAndHomotopyQuotientsFixedPoints'>Cofibrant replacement and homotopy quotients/fixed points</h3>
         4239 
         4240 <p>\begin{prop}\label{CofibrationsOfSimplicialActions} <strong>(cofibrations of simplicial actions)</strong> \linebreak The cofibrations <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo lspace='verythinmathspace'>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>i \colon X \to Y</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> (Def. \ref{BorelModelStructure}) are precisely those morphisms such that</p>
         4241 
         4242 <ol>
         4243 <li>
         4244 <p>the underlying morphism of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> is a <a class='existingWikiWord' href='/nlab/show/monomorphism'>monomorphism</a>;</p>
         4245 </li>
         4246 
         4247 <li>
         4248 <p>the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> is a relatively <a class='existingWikiWord' href='/nlab/show/free+action'>free action</a>, i.e. <a class='existingWikiWord' href='/nlab/show/free+action'>free</a> on all <a class='existingWikiWord' href='/nlab/show/simplex'>simplices</a> not in the <a class='existingWikiWord' href='/nlab/show/image'>image</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi></mrow><annotation encoding='application/x-tex'>i</annotation></semantics></math>.</p>
         4249 </li>
         4250 </ol>
         4251 
         4252 <p>\end{prop}</p>
         4253 
         4254 <p>This is (<a href='#DDK80'>DDK 80, Prop. 2.2. (ii)</a>, <a href='#Guillou'>Guillou, Prop. 5.3</a>, <a href='#GoerssJardine09'>Goerss &amp; Jardine 09, V Lem. 2.4</a>).</p>
         4255 
         4256 <p>\begin{remark} In particular this means that an object is <a class='existingWikiWord' href='/nlab/show/fibrant+object'>cofibrant</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> if the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> on it is <a class='existingWikiWord' href='/nlab/show/free+action'>free</a>.</p>
         4257 
         4258 <p>Hence <a class='existingWikiWord' href='/nlab/show/fibrant+replacement'>cofibrant replacement</a> is obtained by forming the <a class='existingWikiWord' href='/nlab/show/cartesian+product'>product</a> with the model <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>W</mi><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>W G_\bullet</annotation></semantics></math> for the total space of the <a class='existingWikiWord' href='/nlab/show/universal+principal+bundle'>universal principal bundle</a> over <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> (see at <em><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></em> for notation and more details). \end{remark}</p>
         4259 
         4260 <p>\begin{remark} It follows that for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>X, A \in sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>derived hom space</a></p>
         4261 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         4262   R Hom_G(X,A)
         4263 
         4264 </annotation></semantics></math></div>
         4265 <p>models the Borel <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/equivariant+cohomology'>equivariant cohomology</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> with <a class='existingWikiWord' href='/nlab/show/coefficient'>coefficients</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p>
         4266 
         4267 <p>In particular,if <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/fibrant+object'>fibrant</a> (the underlying simplicial set is a <a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a>) then</p>
         4268 
         4269 <ol>
         4270 <li>
         4271 <p>if the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-action on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is trivial, then</p>
         4272 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><mo>×</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><mi>Hom</mi><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         4273   R Hom_G(X,A) 
         4274     \simeq 
         4275   Hom_G(W G \times X , A) 
         4276     \simeq 
         4277   Hom(W G \times_G X, A)
         4278 
         4279 </annotation></semantics></math></div>
         4280 <p>is equivalently maps of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> out of the <a class='existingWikiWord' href='/nlab/show/Borel+construction'>Borel construction</a> on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>;</p>
         4281 </li>
         4282 
         4283 <li>
         4284 <p>if <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>X = \ast </annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/point'>point</a> then</p>
         4285 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><mi>Hom</mi><mo stretchy='false'>(</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msup><mi>A</mi> <mrow><mi>h</mi><mi>G</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>
         4286   R Hom_G(X,A) 
         4287     \simeq 
         4288   Hom_G(W G, A) 
         4289     \simeq 
         4290   Hom(\overline{W} G , A)  
         4291     \simeq 
         4292   A^{h G}
         4293 
         4294 </annotation></semantics></math></div>
         4295 <p>is the <a class='existingWikiWord' href='/nlab/show/homotopy+fixed+point'>homotopy fixed points</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p>
         4296 </li>
         4297 </ol>
         4298 
         4299 <p>\end{remark}</p>
         4300 
         4301 <h3 id='RelationToSliceOverSimplicialClassifyingSpace'>Relation to the slice over the simplicial classifying space</h3>
         4302 
         4303 <p>\begin{prop}\label{QuillenEquivalenceToSliceOverSimplicialClassifyingSpace} For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a>, there is a pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a></p>
         4304 <div class='maruku-equation' id='eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><msub><mo stretchy='false'>)</mo> <mi>proj</mi></msub><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>G</mi></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi></mrow></mover></munderover><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>
         4305     
         4306     G_\bullet Acts(sSet)_{proj}
         4307       \underoverset
         4308         {\underset{ \big((-) \times W G\big)/G }{\longrightarrow}}
         4309         {\overset{ (-) \times_{\overline{W}G} W G  }{\longleftarrow}}
         4310         {\bot}
         4311     sSet_{/\overline{W}G}
         4312   
         4313 </annotation></semantics></math></div>
         4314 <p>which constitute a <a class='existingWikiWord' href='/nlab/show/simplicial+Quillen+adjunction'>simplicial</a> <a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen equivalence</a> between the Borel model structure (Def. \ref{BorelModelStructure}) and the <a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>slice model structure</a> of the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure on simplicial sets</a> slices over the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>simplicial classifying space</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow><annotation encoding='application/x-tex'>\overline{W}G</annotation></semantics></math>.,</p>
         4315 
         4316 <p>\end{prop}</p>
         4317 
         4318 <p>(<a href='#DDK80'>DDK 80, Prop. 2.3, Prop. 2.4</a>) Here:</p>
         4319 
         4320 <ul>
         4321 <li>
         4322 <p>the <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a> forms <a class='existingWikiWord' href='/nlab/show/associated+bundle'>associated bundles</a> to <a class='existingWikiWord' href='/nlab/show/universal+principal+bundle'>universal principal bundles</a></p>
         4323 </li>
         4324 
         4325 <li>
         4326 <p>the <a class='existingWikiWord' href='/nlab/show/left+adjoint'>left adjoint</a> forms <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fibers</a>.</p>
         4327 </li>
         4328 </ul>
         4329 
         4330 <p>In fact, these are <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor'>enriched functors</a> which induced an <a class='existingWikiWord' href='/nlab/show/equivalence+of+%28infinity%2C1%29-categories'>equivalence of (infinity,1)-categories</a> between the <a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localizations</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub><mo>≃</mo><msub><mi>L</mi> <mi>W</mi></msub><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>H</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>L_W sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj} \simeq L_W sSet_{/\overline{W}H}</annotation></semantics></math> (<a href='#DDK80'>DDK 80, Prop. 2.5</a>).</p>
         4331 
         4332 <p>This kind of relation is discussed in more detail at <em><a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></em>.</p>
         4333 
         4334 <p>\begin{remark}\label{sSetEnrichmentOfAdjunctionToSliceOverSimpClassSpace} <strong>(sSet-enrichement of the adjunction)</strong> \linebreak The statement that <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a> is an <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<em><a class='existingWikiWord' href='/nlab/show/enriched+adjunction'>enriched adjunction</a></em> is not made explicit in <a href='#DDK80'>DDK 80</a>; there it only says that the functors form a plain <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjunction</a> (<a href='#DDK80'>DDK 80, Prop. 2.3</a>) and that they are each <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor'>enriched functors</a> (<a href='#DDK80'>DDK 80, Prop. 2.4</a>).</p>
         4335 
         4336 <p>The remaining observation that we have a <a class='existingWikiWord' href='/nlab/show/natural+isomorphism'>natural isomorphism</a> of <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/hom-object'>hom-objects</a></p>
         4337 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>[</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mi>V</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>[</mo><mi>X</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>V</mi><mo>×</mo><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo></mrow><annotation encoding='application/x-tex'>
         4338   \big[
         4339     X \times_{\overline{W}G} W G,
         4340     \,
         4341     V
         4342   \big]
         4343   \;\simeq\;
         4344   \big[
         4345     X,
         4346     \,
         4347     (V \times W G)/G
         4348   \big]
         4349 
         4350 </annotation></semantics></math></div>
         4351 <p>hence</p>
         4352 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>V</mi><mo maxsize='1.8em' minsize='1.8em'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>V</mi><mo>×</mo><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         4353   Hom
         4354   \Big(
         4355     \big( X \times_{\overline{W}G} W G \big) \times \Delta[\bullet],
         4356     \,
         4357     V
         4358   \Big)
         4359   \;\simeq\;
         4360   Hom
         4361   \big(
         4362     X \times \Delta[\bullet],
         4363     \,
         4364     (V \times W G)/G
         4365   \big)
         4366 
         4367 </annotation></semantics></math></div>
         4368 <p>follows from the plain adjunction and the natural isomorphism</p>
         4369 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'>
         4370   (X \times_{\overline{W}G} W G) \times \Delta[\bullet] 
         4371   \;\simeq\;
         4372   (X \times \Delta[\bullet]) \times_{\overline{W}G} W G  
         4373   \,,
         4374 
         4375 </annotation></semantics></math></div>
         4376 <p>which, in turn, follows, for instance, via the <a class='existingWikiWord' href='/nlab/show/pasting+law+for+pullbacks'>pasting law</a>:</p>
         4377 
         4378 <p>\begin{tikzcd} { { (X \times_{\overline{W}G} W G) \times \Delta[k] } \atop { \mathllap{\simeq} (X \times \Delta[k]) \times_{\overline{W}G} W G } } \ar[r] \ar[d] \ar[dr,phantom,\mbox{\tiny\rm(pb)}] &amp; X \times \Delta[k] \ar[d, \mathrm{pr}_1] \ X \times_{\overline{W}G} W G \ar[r] \ar[d] \ar[dr,phantom,\mbox{\tiny\rm(pb)}] &amp; X \ar[d] \ W G \ar[r] &amp; \overline{W}G \,. \end{tikzcd}</p>
         4379 
         4380 <p>\end{remark}</p>
         4381 
         4382 <h3 id='RelationToModelStructureOnPlainSimplicialSets'>Relation to the model structure on plain simplicial sets</h3>
         4383 
         4384 <p>For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mspace width='thinmathspace'></mspace><mo>∈</mo><mspace width='thinmathspace'></mspace><mi>Groups</mi><mo stretchy='false'>(</mo><mi>sSets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G} \,\in\, Groups(sSets)</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a>, write <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G}Actions(sSets)</annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/category'>category</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>actions</a> on <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a>.</p>
         4385 
         4386 <p>\begin{proposition}\label{CofreeAction} <strong>(underlying simplicial sets and cofree simplicial action)</strong> \linebreak The <a class='existingWikiWord' href='/nlab/show/forgetful+functor'>forgetful functor</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>undrl</mi></mrow><annotation encoding='application/x-tex'>undrl</annotation></semantics></math> from <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Actions</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}Actions</annotation></semantics></math> to underlying simplicial sets is a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>left Quillen functor</a> from the Borel model structure (Def. \ref{BorelModelStructure}) to the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure on simplicial sets</a>.</p>
         4387 
         4388 <p>Its <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a></p>
         4389 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSet</mi><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></munder><mover><mo>⟵</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>undrl</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover></munderover><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         4390   sSet
         4391   \underoverset
         4392     {\underset{ \;\;\; [\mathcal{G},-] \;\;\; }{\longrightarrow}}
         4393     {\overset{ \;\;\; undrl \;\;\; }{\longleftarrow}}
         4394     {\bot}
         4395   \mathcal{G}Actions(sSet)
         4396 
         4397 </annotation></semantics></math></div>
         4398 <p>sends <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \in sSet</annotation></semantics></math> to</p>
         4399 
         4400 <ul>
         4401 <li>
         4402 <p>the simplicial set</p>
         4403 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><msub><mi>Hom</mi> <mi>sSet</mi></msub><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>
         4404   [\mathcal{G},\mathcal{X}] 
         4405   \;\coloneqq\;
         4406   Hom_{sSet}\big( \mathcal{G} \times \Delta[\bullet], \mathcal{X}\big) 
         4407   \;\;\;
         4408   \in
         4409   sSet
         4410 
         4411 </annotation></semantics></math></div></li>
         4412 
         4413 <li>
         4414 <p>equipped with the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-action</p>
         4415 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mo>×</mo><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>
         4416   \mathcal{G} \times [\mathcal{G},\mathcal{X}]
         4417   \overset{ (-) \cdot (-) }{\longrightarrow}
         4418   \mathcal{G}
         4419 
         4420 </annotation></semantics></math></div>
         4421 <p>which in degree <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/function'>function</a></p>
         4422 <div class='maruku-equation' id='eq:CofreeSimplicialActionComponentFunctions'><span class='maruku-eq-number'>(2)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Hom</mi><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒢</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>×</mo><mspace width='thinmathspace'></mspace><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>⟶</mo><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         4423   
         4424   Hom(\Delta[n], \mathcal{G})
         4425   \,\times\,
         4426   Hom
         4427   \big(
         4428     \mathcal{G} \times \Delta[n],
         4429     \,
         4430     \mathcal{X}
         4431   \big)
         4432   \longrightarrow
         4433   Hom
         4434   \big(
         4435     \mathcal{G} \times \Delta[n],
         4436     \,
         4437     \mathcal{X}
         4438   \big)    
         4439 
         4440 </annotation></semantics></math></div>
         4441 <p>that sends</p>
         4442 <div class='maruku-equation' id='eq:CofreeSimplicialActionInComponents'><span class='maruku-eq-number'>(3)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mrow><msub><mi>g</mi> <mi>n</mi></msub></mrow></mover><mi>𝒢</mi><mo>,</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mi>ϕ</mi></mover><mi>𝒳</mi><mo>,</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>↦</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><mi>diag</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>×</mo><mi>id</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>id</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mi>ϕ</mi></mover><mi>𝒳</mi><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         4443 
         4444 \begin{aligned}
         4445 &amp;
         4446 \Big(
         4447   \Delta[n] \overset{g_n}{\to} \mathcal{G},
         4448   \;
         4449   \mathcal{G}\times \Delta[n]
         4450   \overset{\phi}{\to}
         4451   \mathcal{X},
         4452 \Big)
         4453 \\
         4454 \;\;\mapsto\;\;
         4455 &amp;
         4456 \Big(
         4457 \mathcal{G} \times \Delta[n]
         4458 \overset{id \times diag}{\longrightarrow}
         4459 \mathcal{G} \times \Delta[n] \times \Delta[n]
         4460 \overset{ id \times g_n \times id }{\longrightarrow}
         4461 \mathcal{G} \times \mathcal{G} \times \Delta[n]
         4462 \overset{(-)\cdot(-) \times id}{\to}
         4463 \mathcal{G} \times \Delta[n]
         4464 \overset{\phi}{\to}
         4465 \mathcal{X}
         4466 \Big)
         4467 \end{aligned}
         4468 
         4469 </annotation></semantics></math></div></li>
         4470 </ul>
         4471 
         4472 <p>\end{proposition}</p>
         4473 
         4474 <p>Here and in the following proof we make free use of the <a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a> <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijection</a></p>
         4475 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Hom</mi> <mi>sSet</mi></msub><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒮</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msub><mi>𝒮</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>
         4476   Hom_{sSet}(\Delta[n], \mathcal{S}) \;\simeq\; \mathcal{S}_n
         4477 
         4478 </annotation></semantics></math></div>
         4479 <p>for any <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> and for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi><mover><mo>↪</mo><mi>y</mi></mover><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\Delta[n] \in \Delta \overset{y}{\hookrightarrow} sSet</annotation></semantics></math> the simplicial <a class='existingWikiWord' href='/nlab/show/simplex'>n-simplex</a>.</p>
         4480 
         4481 <p>\begin{proof}</p>
         4482 
         4483 <p>We already know from Def. \ref{BorelModelStructure} that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>underl</mi></mrow><annotation encoding='application/x-tex'>underl</annotation></semantics></math> preserves all <a class='existingWikiWord' href='/nlab/show/weak+equivalence'>weak equivalences</a> and from Prop. \ref{CofibrationsOfSimplicialActions} that it preserves all <a class='existingWikiWord' href='/nlab/show/cofibration'>cofibrations</a>. Therefore it is a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>left Quillen functor</a> as soon as it is a <a class='existingWikiWord' href='/nlab/show/left+adjoint'>left adjoint</a> at all.</p>
         4484 
         4485 <p>The idea of the existence of the <a class='existingWikiWord' href='/nlab/show/free+functor'>cofree</a> <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a> to <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>undrl</mi></mrow><annotation encoding='application/x-tex'>undrl</annotation></semantics></math> is familiar from <a class='existingWikiWord' href='/nlab/show/topological+G-space'>topological G-spaces</a> (see the section on <a href='topological+G-space#CoinducedActions'>coinduced actions</a> there), where it can be easily expressed point-wise in <a class='existingWikiWord' href='/nlab/show/general+topology'>point-set topology</a>. The formula <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> adapts this idea to simplicial sets. Its form makes manifest that this gives a simplicial homomorphism, and with this the adjointness follows the usual logic by focusing on the image of the non-degenerate top-degree cell in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta[n]</annotation></semantics></math>:</p>
         4486 
         4487 <p>To check that <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> really gives the right adjoint, it is sufficient to check the corresponding <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a>, hence to check for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒫</mi><mo>∈</mo><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{P} \in \mathcal{G}Actions(sSet)</annotation></semantics></math>, and <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \in sSet</annotation></semantics></math>, that we have a <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijection</a> of <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the form</p>
         4488 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>𝒫</mi><mover><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mo maxsize='1.2em' minsize='1.2em'>}</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mover><mo>↔</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mover><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><mo>˜</mo></mover><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>undrl</mi><mo stretchy='false'>(</mo><mi>𝒫</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>}</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         4489   \big\{
         4490     \mathcal{P} 
         4491        \overset{\;\;\phi_{(-)}\;\;}{\longrightarrow} 
         4492     [\mathcal{G}, \mathcal{X}]
         4493   \big\}
         4494   \;\;\;\overset{ \;\; \widetilde{(-)} \;\; }{\leftrightarrow}\;\;\;
         4495   \big\{
         4496     undrl(\mathcal{P}) 
         4497       \overset{\;\; {\widetilde \phi}_{(-)} \;\; }{\longrightarrow} 
         4498     \mathcal{X}
         4499   \big\}
         4500   \,.
         4501 
         4502 </annotation></semantics></math></div>
         4503 <p>So given</p>
         4504 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>p</mi> <mi>n</mi></msub><mo>↦</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>→</mo><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         4505   \phi_{(-)}
         4506   \;\colon\;
         4507   p_n 
         4508   \mapsto 
         4509   \big(
         4510     \phi_{p_n}
         4511     \;\colon\;
         4512     \mathcal{G} \times \Delta[n] \to \mathcal{X}
         4513   \big)
         4514 
         4515 </annotation></semantics></math></div>
         4516 <p>on the left, define</p>
         4517 <div class='maruku-equation' id='eq:AdjunctOfHomomorphismToCofreeSimplicialAction'><span class='maruku-eq-number'>(4)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>p</mi> <mi>n</mi></msub><mo>↦</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><msub><mi>𝒳</mi> <mi>n</mi></msub><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'>
         4518   
         4519   \widetilde \phi_{(-)}
         4520   \;\colon\;
         4521   p_n 
         4522   \mapsto
         4523   \phi_{p_n}(e_n, \sigma_n)
         4524   \;\in\;
         4525   \mathcal{X}_n
         4526   \,,
         4527 
         4528 </annotation></semantics></math></div>
         4529 <p>where <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>e</mi> <mi>n</mi></msub><mo>∈</mo><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e_n \in \mathcal{G}_n</annotation></semantics></math> denotes the <a class='existingWikiWord' href='/nlab/show/identity+element'>neutral element</a> in degree <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math> and where <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>σ</mi> <mi>n</mi></msub><mo>∈</mo><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><msub><mo stretchy='false'>)</mo> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\sigma_n \in (\Delta[n])_n</annotation></semantics></math> denotes the unique non-degenerate element <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-cell in the <a class='existingWikiWord' href='/nlab/show/simplex'>n-simplex</a>.</p>
         4530 
         4531 <p>It is clear that this is a <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>. We need to show that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mo lspace='verythinmathspace'>:</mo><mi>undrl</mi><mo stretchy='false'>(</mo><mi>P</mi><mo stretchy='false'>)</mo><mo>→</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>{\widetilde \phi}_{(-)} \colon undrl(P) \to X</annotation></semantics></math> uniquely determines all of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math>.</p>
         4532 
         4533 <p>To that end, observe for any <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>∈</mo><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>g_n \in \mathcal{G}_n</annotation></semantics></math> the following sequence of identifications:</p>
         4534 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         4535   \begin{aligned} 
         4536     \phi_{p_n}(g_n, \sigma_n)
         4537     &amp; \;=\;
         4538     \phi_{p_n}( e_n \cdot g_n, \sigma_n )
         4539     \\
         4540     &amp; \;=\;
         4541     \big(
         4542       g_n \cdot \phi_{p_n}
         4543     \big)
         4544     ( e_n, \sigma_n )
         4545     \\
         4546     &amp; \;=\;
         4547     \phi_{ g_n \cdot p_n }
         4548     (e_n, \sigma_n)
         4549     \\
         4550     &amp; \;=\;
         4551     {\widetilde \phi}_{g_n \cdot p_n}
         4552   \end{aligned}
         4553 
         4554 </annotation></semantics></math></div>
         4555 <p>Here:</p>
         4556 
         4557 <ul>
         4558 <li>
         4559 <p>the first step is the unit law in the component group <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{G}_n</annotation></semantics></math>;</p>
         4560 </li>
         4561 
         4562 <li>
         4563 <p>the second step uses the definition <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> of the cofree action;</p>
         4564 </li>
         4565 
         4566 <li>
         4567 <p>the third step is the assumption that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math> is a homomorphism of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-actions (<a class='existingWikiWord' href='/nlab/show/equivariant'>equivariance</a>);</p>
         4568 </li>
         4569 
         4570 <li>
         4571 <p>the fourth step is the definition <a class='maruku-eqref' href='#eq:AdjunctOfHomomorphismToCofreeSimplicialAction'>(4)</a>.</p>
         4572 </li>
         4573 </ul>
         4574 
         4575 <p>These identifications show that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math> is uniquely determined by <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{\widetilde \phi_{(-)}}</annotation></semantics></math>, and vice versa.</p>
         4576 
         4577 <p>\end{proof}</p>
         4578 
         4579 <p>\begin{example}\label{BZActionOnInertiaGroupoid} <strong>(<math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}\mathbb{Z}</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-action'>2-action</a> on <a class='existingWikiWord' href='/nlab/show/inertia+orbifold'>inertia groupoid</a>)</strong> \linebreak Let</p>
         4580 
         4581 <ul>
         4582 <li>
         4583 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo>∈</mo><mi>Groups</mi><mo stretchy='false'>(</mo><mi>Sets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>G \in Groups(Sets)</annotation></semantics></math></p>
         4584 
         4585 <p>be a <a class='existingWikiWord' href='/nlab/show/discrete+group'>discrete group</a>,</p>
         4586 </li>
         4587 
         4588 <li>
         4589 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>∈</mo><mi>G</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>Sets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>X \in G Actions(Sets)</annotation></semantics></math></p>
         4590 
         4591 <p>be a <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a>,</p>
         4592 </li>
         4593 
         4594 <li>
         4595 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>X</mi><mo>⫽</mo><mi>G</mi><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>N</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>G</mi><mo>⇉</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>=</mo><mspace width='thinmathspace'></mspace><mi>X</mi><mo>×</mo><msup><mi>G</mi> <mrow><msup><mo>×</mo> <mo>•</mo></msup></mrow></msup><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \;\coloneqq\; X \sslash G \;\coloneqq\; N( X \times G \rightrightarrows X ) \,=\, X \times G^{\times^\bullet} \in sSet</annotation></semantics></math></p>
         4596 
         4597 <p>the <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> which is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of its <a class='existingWikiWord' href='/nlab/show/action+groupoid'>action groupoid</a> (a model for its <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a>),</p>
         4598 </li>
         4599 
         4600 <li>
         4601 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><mi>N</mi><mo stretchy='false'>(</mo><mi>ℤ</mi><mo>⇉</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><msup><mi>ℤ</mi> <mrow><msup><mo>×</mo> <mo>•</mo></msup></mrow></msup><mspace width='thinmathspace'></mspace><mo>∈</mo><mspace width='thinmathspace'></mspace><mi>Groups</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G} \,\coloneqq\, \mathbf{B}\mathbb{Z} \,\coloneqq\, N(\mathbb{Z} \rightrightarrows \ast)  \,\coloneqq\, \mathbb{Z}^{\times^\bullet} \,\in\, Groups(sSet)</annotation></semantics></math></p>
         4602 
         4603 <p>the <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> which is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of the <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a> that is the <a class='existingWikiWord' href='/nlab/show/delooping+groupoid'>delooping groupoid</a> of the additive group of <a class='existingWikiWord' href='/nlab/show/integer'>integers</a>.</p>
         4604 </li>
         4605 </ul>
         4606 
         4607 <p>Then the <a class='existingWikiWord' href='/nlab/show/functor+category'>functor groupoid</a></p>
         4608 <div class='maruku-equation' id='eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'><span class='maruku-eq-number'>(5)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Λ</mi><mo stretchy='false'>(</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo stretchy='false'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>[</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi><mo>,</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Func</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mi>ℤ</mi><mo>⇉</mo><mo>*</mo><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>G</mi><mo>⇉</mo><mi>X</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><munder><mo>←</mo><mrow><mo>∈</mo><mi mathvariant='normal'>W</mi></mrow></munder><mspace width='thickmathspace'></mspace><munder><mo lspace='thinmathspace' rspace='thinmathspace'>∐</mo><mrow><mo stretchy='false'>[</mo><mi>g</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>ConjCl</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow></munder><mo maxsize='1.8em' minsize='1.8em'>(</mo><msup><mi>X</mi> <mi>g</mi></msup><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><msub><mi>C</mi> <mi>g</mi></msub><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         4609   
         4610   \begin{aligned}
         4611     \Lambda(X \!\sslash\! G)
         4612     &amp; \;\coloneqq\;
         4613     \big[
         4614       \mathbf{B}\mathbb{Z}, X \!\sslash\! G
         4615     \big]
         4616     \\
         4617     &amp;
         4618     \;\simeq\;
         4619     Func
         4620     \big(  
         4621       (\mathbb{Z} \rightrightarrows \ast),
         4622       \,
         4623       (X \times G \rightrightarrows X)
         4624     \big)
         4625     \\
         4626     &amp; \;\underset{\in \mathrm{W}}{\leftarrow}\;
         4627     \underset{
         4628       [g] \in ConjCl(G)
         4629     }{\coprod}
         4630     \Big(
         4631       X^{g} \!\sslash\! C_g
         4632     \Big)
         4633   \end{aligned}
         4634 
         4635 </annotation></semantics></math></div>
         4636 <p>is known as the <em><a class='existingWikiWord' href='/nlab/show/inertia+orbifold'>inertia groupoid</a></em> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi></mrow><annotation encoding='application/x-tex'>X \!\sslash\! G</annotation></semantics></math>. Here</p>
         4637 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ConjCla</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>G</mi><msub><mo stretchy='false'>/</mo> <mi>ad</mi></msub><mi>G</mi><mspace width='thinmathspace'></mspace><mo>,</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mi>C</mi> <mi>g</mi></msub><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>h</mi><mo>∈</mo><mi>G</mi><mspace width='thinmathspace'></mspace><mrow><mo>|</mo><mspace width='thinmathspace'></mspace><mi>h</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>g</mi><mo>⋅</mo><mi>h</mi></mrow><mo maxsize='1.2em' minsize='1.2em'>}</mo></mrow><annotation encoding='application/x-tex'>
         4638   ConjCla(G)
         4639   \;\coloneqq\;
         4640   G/_{ad} G
         4641   \,,
         4642   \;\;\;\;\;\;\;\;\;\;\;
         4643   C_g 
         4644   \;\coloneqq\;
         4645   \big\{
         4646     h \in G
         4647     \,\left\vert\,
         4648     h \cdot g = g \cdot h
         4649     \right.
         4650   \big\}
         4651 
         4652 </annotation></semantics></math></div>
         4653 <p>denotes, respectively, the set of <a class='existingWikiWord' href='/nlab/show/conjugacy+class'>conjugacy classes</a> of elements of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>, and the <a class='existingWikiWord' href='/nlab/show/centralizer'>centralizer</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>g</mi><mo stretchy='false'>}</mo><mo>⊂</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\{g\} \subset G</annotation></semantics></math> – this data serves to express the <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalent</a> <a class='existingWikiWord' href='/nlab/show/skeleton'>skeleton</a> of the inertia groupoid in the last line of <a class='maruku-eqref' href='#eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'>(5)</a>.</p>
         4654 
         4655 <p>Now, by Prop. \ref{CofreeAction} the inertia groupoid <a class='maruku-eqref' href='#eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'>(5)</a> carries a canonical <a class='existingWikiWord' href='/nlab/show/infinity-action'>2-action</a> of the <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}\mathbb{Z}</annotation></semantics></math>:</p>
         4656 
         4657 <p>By the formula <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a>, for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{Z}</annotation></semantics></math> the 2-group element in degree 1</p>
         4658 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathcolor='purple'><mi>n</mi></mstyle><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Δ</mi><mo stretchy='false'>[</mo><mn>1</mn><mo stretchy='false'>]</mo><mo>⟶</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding='application/x-tex'>
         4659   {\color{purple}n}
         4660   \;\colon\;
         4661   \Delta[1]
         4662   \longrightarrow
         4663   \mathbf{B}G
         4664 
         4665 </annotation></semantics></math></div>
         4666 <p>acts on the morphisms</p>
         4667 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>g</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mi>h</mi></mover><mo stretchy='false'>(</mo><mi>h</mi><mo>⋅</mo><mi>x</mi><mo>,</mo><mi>g</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Λ</mi><mo stretchy='false'>(</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         4668   (x,g) \overset{h}{\longrightarrow} (h\cdot x, g)
         4669   \;\;\;
         4670   \in
         4671   \;
         4672   \Lambda(X \!\sslash\! G)
         4673 
         4674 </annotation></semantics></math></div>
         4675 <p>of the inertia groupoid as follows (recall the nature of <a class='existingWikiWord' href='/nlab/show/product+of+simplices'>products of simplices</a>):</p>
         4676 
         4677 <p><img src='https://ncatlab.org/nlab/files/BZActionOnInertiaGroupoid20210624.jpg' width='800'/></p>
         4678 
         4679 <p>\end{example}</p>
         4680 
         4681 <h3 id='relation_to_the_fine_model_structure_of_equivariant_homotopy_theory'>Relation to the fine model structure of equivariant homotopy theory</h3>
         4682 
         4683 <p>The <a class='existingWikiWord' href='/nlab/show/identity+functor'>identity functor</a> gives a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a> between the Borel model structure and <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> (<a href='#Guillou'>Guillou, section 5</a>).</p>
         4684 
         4685 <p>The left adjoint is</p>
         4686 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>L</mi><mo>=</mo><mi>id</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>coarse</mi></msub><mo>⟶</mo><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>fine</mi></msub></mrow><annotation encoding='application/x-tex'>
         4687   L = id 
         4688     \;\colon\; 
         4689   G_\bullet Act_{coarse} 
         4690     \longrightarrow 
         4691   G_\bullet Act_{fine}
         4692 
         4693 </annotation></semantics></math></div>
         4694 <p>from the Borel model structure to the genuine <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a>.</p>
         4695 
         4696 <p>Because:</p>
         4697 
         4698 <p>First of all, by (<a href='#Guillou'>Guillou, theorem 3.12, example 4.2</a>) <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>sSet</mi> <mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>sSet^{\mathbf{B}G_\bullet}</annotation></semantics></math> does carry a fine model structure. By (<a href='#Guillou'>Guillou, last line of page 3</a>) the fibrations and weak equivalences here are those maps which are ordinary fibrations and weak equivalences, respectively, on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/fixed+point'>fixed point</a> simplicial sets, for all subgroups <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math>. This includes in particular the trivial subgroup and hence the identity functor</p>
         4699 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo>=</mo><mi>id</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>fine</mi></msub><mo>⟶</mo><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>coarse</mi></msub></mrow><annotation encoding='application/x-tex'>
         4700   R = id \;\colon\; G_\bullet Act_{fine} \longrightarrow G_\bullet Act_{coarse}
         4701 
         4702 </annotation></semantics></math></div>
         4703 <p>is right Quillen.</p>
         4704 
         4705 <h3 id='GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</h3>
         4706 
         4707 <p>Since the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>universal simplicial principal complex</a>-construction is <a class='existingWikiWord' href='/nlab/show/functor'>functorial</a></p>
         4708 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SimplicialGroups</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>W</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>SimplicialSets</mi></mrow><annotation encoding='application/x-tex'>
         4709   SimplicialGroups
         4710   \xrightarrow{\;\; W \;\;}
         4711   SimplicialSets
         4712 
         4713 </annotation></semantics></math></div>
         4714 <p>with <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformations</a></p>
         4715 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>i</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>W</mi><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>p</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>
         4716   \mathcal{G}
         4717   \xrightarrow{\;\; i \;\;}
         4718   W\mathcal{G}
         4719   \xrightarrow{\;\; p \;\;}  
         4720   \overline{W}\mathcal{G}
         4721 
         4722 </annotation></semantics></math></div>
         4723 <p>the pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a> <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a> extends to <a class='existingWikiWord' href='/nlab/show/presheaf'>presheaves</a>:</p>
         4724 
         4725 <p>\begin{prop} For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/small+category'>small</a> <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-category</a> with</p>
         4726 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo stretchy='false'>(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mspace width='thinmathspace'></mspace><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         4727   sPSh(\mathcal{C})
         4728   \;\coloneqq\;
         4729   sSetCat( \mathcal{C}^{op}, \, sSet )
         4730 
         4731 </annotation></semantics></math></div>
         4732 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>simplicial presheaves</a>, and for</p>
         4733 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_113' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Groups</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         4734   \underline{\mathcal{G}}
         4735   \;\in\;
         4736   Groups
         4737   \big(
         4738     sPSh(\mathcal{C})
         4739   \big)
         4740 
         4741 </annotation></semantics></math></div>
         4742 <p>a <a class='existingWikiWord' href='/nlab/show/group+object'>group object</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a> with</p>
         4743 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_114' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         4744   \underline{\mathcal{G}}
         4745   Acts
         4746   \big(
         4747     sPSh(\mathcal{C})
         4748   \big)  
         4749 
         4750 </annotation></semantics></math></div>
         4751 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/module+object'>action objects</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a></p>
         4752 
         4753 <p>we have an <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint pair</a></p>
         4754 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_115' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'>
         4755   \underline{\mathcal{G}}
         4756   Acts
         4757   \big(
         4758     sPSh(\mathcal{C})
         4759   \big)  
         4760   \underoverset
         4761     {
         4762       \underset{ 
         4763         \big(
         4764           (-) \times W\underline{\mathcal{G}} 
         4765         \big) 
         4766         \big/
         4767         \underline{\mathcal{G}}
         4768       }
         4769       {\longrightarrow}}
         4770     {
         4771       \overset{
         4772         (-) 
         4773           \times_{\overline{W}\underline{\mathcal{G}}}
         4774         W\underline{\mathcal{G}}
         4775       }{\longleftarrow}
         4776     }
         4777     {\bot}
         4778     sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}}
         4779 
         4780 </annotation></semantics></math></div>
         4781 <p>\end{prop} \begin{proof}</p>
         4782 
         4783 <p>The required <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> is the composite of the following sequence of <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijections</a>:</p>
         4784 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_116' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo stretchy='false'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mi>p</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><msub><mi>Hom</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></msub><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>Y</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         4785   \begin{aligned}
         4786     Hom
         4787     \Big(
         4788       (\underline{X},p),
         4789       \,
         4790       \big(
         4791         \underline{Y} \times W\underline{\mathcal{G}}  
         4792       \big) / \underline{\mathcal{G}}
         4793     \Big)
         4794     &amp; 
         4795     \;\simeq\;
         4796     Hom
         4797     \Big(
         4798       \underline{X},
         4799       \,
         4800       \big(
         4801         \underline{Y} \times W\underline{\mathcal{G}}  
         4802       \big) / \underline{\mathcal{G}}
         4803     \Big)
         4804     \underset{
         4805     Hom
         4806     \Big(
         4807       \underline{X},
         4808       \,
         4809       \overline{W} \underline{\mathcal{G}}
         4810     \Big)
         4811     }{\times}
         4812     \{p\}
         4813     \\
         4814     &amp; \;\simeq\;
         4815     \int^c
         4816     Hom
         4817     \Big(
         4818       \underline{X}(c),
         4819       \,
         4820       \big(
         4821         \underline{Y}(c) \times W\underline{\mathcal{G}(c)}  
         4822       \big) / \underline{\mathcal{G}}(c)
         4823     \Big)
         4824     \underset{
         4825     \int^c
         4826     Hom
         4827     \Big(
         4828       \underline{X}(c),
         4829       \,
         4830       \overline{W} \underline{\mathcal{G}}(c)
         4831     \Big)
         4832     }{\times}
         4833     \{p\}
         4834     \\
         4835     &amp; \;\simeq\;
         4836     \int^c
         4837     \left(
         4838     Hom
         4839     \Big(
         4840       \underline{X}(c),
         4841       \,
         4842       \big(
         4843         \underline{Y}(c) \times W\underline{\mathcal{G}}(c)  
         4844       \big) / \underline{\mathcal{G}}(c)
         4845     \Big)
         4846     \underset{
         4847     Hom
         4848     \Big(
         4849       \underline{X}(c),
         4850       \,
         4851       \overline{W} \underline{\mathcal{G}}(c)
         4852     \Big)
         4853     }{\times}
         4854     \{p(c)\}
         4855     \right)
         4856     \\
         4857     &amp; \;\simeq\;
         4858     \int^c 
         4859     Hom_{/\overline{W}\underline{\mathcal{G}}(c)}
         4860     \Big(
         4861       \big( \underline{X}(c), p(c)\big),
         4862       \,
         4863       \big(
         4864         \underline{Y}(c) \times \overline{W} \underline{\mathcal{G}}(c)
         4865       \big)\big/ \mathcal{G}(c)
         4866     \Big)
         4867     \\ 
         4868     &amp; \;\simeq\;
         4869     \int^c
         4870     \left(
         4871       \underline{\mathcal{G}}(c)
         4872       Acts(sSet)
         4873       \big(
         4874         \underline{X}(c) 
         4875           \underset{ \overline{W}\underline{\mathcal{G}}(c) }{\times}
         4876         W \underline{\mathcal{G}}(c),
         4877         \,
         4878         \underline{Y}(c)
         4879       \big)
         4880     \right)
         4881     \\
         4882     &amp; \;\simeq\;
         4883     \mathcal{G}Acts(sPSh(\mathcal{C}))
         4884     \big(
         4885       \underline{X} 
         4886         \underset{\overline{W}\underline{\mathcal{G}}}{\times}
         4887       W \underline{\mathcal{G}},
         4888       \,
         4889       \underline{Y}
         4890     \big)
         4891   \end{aligned}
         4892 
         4893 </annotation></semantics></math></div>
         4894 <p>Here:</p>
         4895 
         4896 <ul>
         4897 <li>
         4898 <p>the first step is the characterization of hom-sets of a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a> as a <a class='existingWikiWord' href='/nlab/show/fiber'>fiber</a> of the <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the underlying category;</p>
         4899 </li>
         4900 
         4901 <li>
         4902 <p>the second step is the description of the hom-set of a <a class='existingWikiWord' href='/nlab/show/functor+category'>functor category</a> as an <a class='existingWikiWord' href='/nlab/show/end'>end</a> of object-wise hom-sets;</p>
         4903 </li>
         4904 
         4905 <li>
         4906 <p>the third step uses that <a class='existingWikiWord' href='/nlab/show/end'>ends</a> are <a class='existingWikiWord' href='/nlab/show/limit'>limits</a> and <a class='existingWikiWord' href='/nlab/show/limits+commute+with+limits'>hence commute</a> the the <a class='existingWikiWord' href='/nlab/show/pullback'>fiber product</a>;</p>
         4907 </li>
         4908 
         4909 <li>
         4910 <p>the fourth step recognizes again, now object-wise, the hom-set in a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a>;</p>
         4911 </li>
         4912 
         4913 <li>
         4914 <p>the fifth step is objectwise the <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> of <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a>;</p>
         4915 </li>
         4916 
         4917 <li>
         4918 <p>the sixth step recognizes again the <a class='existingWikiWord' href='/nlab/show/end'>end</a> as computing the hom-set in (a subcategory of) a functor category:</p>
         4919 </li>
         4920 </ul>
         4921 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_117' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd></mtr> <mtr><mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         4922   \array{
         4923     \underline{\mathcal{G}}Acts
         4924     \big(
         4925       \underline{A}, \, \underline{B}
         4926     \big)
         4927     &amp;\longrightarrow&amp;
         4928     \mathcal{G}(c_1)Acts
         4929     \big(
         4930        \underline{A}(c_1), \, \underline{B}(c_1)
         4931     \big)
         4932     \\
         4933     \big\downarrow
         4934     &amp;&amp;
         4935     \big\downarrow
         4936     \\
         4937     \mathcal{G}(c_2)Acts
         4938     \big(
         4939       \underline{A}(c_2), \, \underline{B}(c_2)
         4940     \big)
         4941     &amp;\longrightarrow&amp;
         4942     Hom
         4943     \big(
         4944       \underline{A}(c_1), \, \underline{B}(c_2)
         4945     \big)
         4946   }
         4947 
         4948 </annotation></semantics></math></div>
         4949 <p>\end{proof}</p>
         4950 
         4951 <h2 id='references'>References</h2>
         4952 
         4953 <p>The model structure, the characterization of its cofibrations, and its equivalence to the <a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>slice model structure</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_118' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>sSet</annotation></semantics></math> over <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_119' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mover><mi>W</mi><mo stretchy='false'>¯</mo></mover><mi>G</mi></mrow><annotation encoding='application/x-tex'>\bar W G</annotation></semantics></math> is due to</p>
         4954 
         4955 <ul>
         4956 <li id='DDK80'><a class='existingWikiWord' href='/nlab/show/Emmanuel+Dror+Farjoun'>Emmanuel Dror</a>, <a class='existingWikiWord' href='/nlab/show/William+Dwyer'>William Dwyer</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Kan'>Daniel Kan</a>, <em>Equivariant maps which are self homotopy equivalences</em>, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670–672 (<a href='http://www.jstor.org/stable/2043448'>jstor:2043448</a>)</li>
         4957 </ul>
         4958 
         4959 <p>This Quillen equivalence also mentioned as:</p>
         4960 
         4961 <ul>
         4962 <li id='Dwyer2008'><a class='existingWikiWord' href='/nlab/show/William+Dwyer'>William Dwyer</a>, Exercise 4.2 in: <em>Homotopy theory of classifying spaces</em>, Lecture notes, Copenhagen 2008, (<a href='http://www.math.ku.dk/~jg/homotopical2008/Dwyer.CopenhagenNotes.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Dwyer_HomotopyTheoryOfClassifyingSpaces.pdf' title='pdf'>pdf</a>)</li>
         4963 </ul>
         4964 
         4965 <p>Discussion in relation to the “fine” model structure of <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> which appears in <a class='existingWikiWord' href='/nlab/show/Elmendorf%27s+theorem'>Elmendorf&#39;s theorem</a> is in</p>
         4966 
         4967 <ul>
         4968 <li id='Guillou'><a class='existingWikiWord' href='/nlab/show/Bert+Guillou'>Bert Guillou</a>, <em>A short note on models for equivariant homotopy theory</em>, 2006 (<a href='http://www.math.uiuc.edu/~bertg/EquivModels.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/GuillouModelsForEquivariantHomotopyTheory.pdf' title='pdf'>pdf</a>)</li>
         4969 </ul>
         4970 
         4971 <p>Textbook account of (just) the Borel model structure:</p>
         4972 
         4973 <ul>
         4974 <li id='GoerssJardine09'><a class='existingWikiWord' href='/nlab/show/Paul+Goerss'>Paul Goerss</a>, <a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, Section V.2 of: <em><a class='existingWikiWord' href='/nlab/show/Simplicial+homotopy+theory'>Simplicial homotopy theory</a></em>, Progress in Mathematics, Birkhäuser (1999) Modern Birkhäuser Classics (2009) (<a href='https://link.springer.com/book/10.1007/978-3-0346-0189-4'>doi:10.1007/978-3-0346-0189-4</a>, <a href='http://web.archive.org/web/19990208220238/http://www.math.uwo.ca/~jardine/papers/simp-sets/'>webpage</a>)</li>
         4975 </ul>
         4976 
         4977 <p>Discussion with the model of <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-groups</a> by <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial groups</a> replaced by groupal <a class='existingWikiWord' href='/nlab/show/Segal+space'>Segal spaces</a> is in</p>
         4978 
         4979 <ul>
         4980 <li><a class='existingWikiWord' href='/nlab/show/Matan+Prasma'>Matan Prasma</a>, <em>Segal Group Actions</em> (<a href='http://arxiv.org/abs/1311.4749'>arXiv:1311.4749</a>)</li>
         4981 </ul>
         4982 
         4983 <p>Discussion of a <a class='existingWikiWord' href='/nlab/show/global+equivariant+homotopy+theory'>globalized</a> model structure for actions of all simplicial groups is in</p>
         4984 
         4985 <ul>
         4986 <li><a class='existingWikiWord' href='/nlab/show/Yonatan+Harpaz'>Yonatan Harpaz</a>, <a class='existingWikiWord' href='/nlab/show/Matan+Prasma'>Matan Prasma</a>, section 6.2 of <em>The Grothendieck construction for model categories</em> (<a href='http://arxiv.org/abs/1404.1852'>arXiv:1404.1852</a>)</li>
         4987 </ul>
         4988 
         4989 <p>
         4990 </p>      </div>
         4991     </content>
         4992   </entry>
         4993   <entry>
         4994     <title type="html">Sandbox</title>
         4995     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Sandbox"/>
         4996     <updated>2021-07-01T16:14:56Z</updated>
         4997     <published>2009-07-07T06:11:26Z</published>
         4998     <id>tag:ncatlab.org,2009-07-07:nLab,Sandbox</id>
         4999     <author>
         5000       <name>Urs Schreiber</name>
         5001     </author>
         5002     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Sandbox">
         5003       <div xmlns="http://www.w3.org/1999/xhtml">
         5004 <h3 id='GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</h3>
         5005 
         5006 <p>Since the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>universal simplicial principal complex</a>-construction is <a class='existingWikiWord' href='/nlab/show/functor'>functorial</a></p>
         5007 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SimplicialGroups</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>W</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>SimplicialSets</mi></mrow><annotation encoding='application/x-tex'>
         5008   SimplicialGroups
         5009   \xrightarrow{\;\; W \;\;}
         5010   SimplicialSets
         5011 
         5012 </annotation></semantics></math></div>
         5013 <p>with <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformations</a></p>
         5014 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>i</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>W</mi><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>p</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>
         5015   \mathcal{G}
         5016   \xrightarrow{\;\; i \;\;}
         5017   W\mathcal{G}
         5018   \xrightarrow{\;\; p \;\;}  
         5019   \overline{W}\mathcal{G}
         5020 
         5021 </annotation></semantics></math></div>
         5022 <p>the pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a> (eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace) extends to <a class='existingWikiWord' href='/nlab/show/presheaf'>presheaves</a>:</p>
         5023 
         5024 <p>\begin{prop} For <math class='maruku-mathml' display='inline' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/small+category'>small</a> <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-category</a> with</p>
         5025 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo stretchy='false'>(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mspace width='thinmathspace'></mspace><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>
         5026   sPSh(\mathcal{C})
         5027   \;\coloneqq\;
         5028   sSetCat( \mathcal{C}^{op}, \, sSet )
         5029 
         5030 </annotation></semantics></math></div>
         5031 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>simplicial presheaves</a>, and for</p>
         5032 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Groups</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         5033   \underline{\mathcal{G}}
         5034   \;\in\;
         5035   Groups
         5036   \big(
         5037     sPSh(\mathcal{C})
         5038   \big)
         5039 
         5040 </annotation></semantics></math></div>
         5041 <p>a <a class='existingWikiWord' href='/nlab/show/group+object'>group object</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a> with</p>
         5042 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>
         5043   \underline{\mathcal{G}}
         5044   Acts
         5045   \big(
         5046     sPSh(\mathcal{C})
         5047   \big)  
         5048 
         5049 </annotation></semantics></math></div>
         5050 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/module+object'>action objects</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a></p>
         5051 
         5052 <p>we have an <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint pair</a></p>
         5053 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'>
         5054   \underline{\mathcal{G}}
         5055   Acts
         5056   \big(
         5057     sPSh(\mathcal{C})
         5058   \big)  
         5059   \underoverset
         5060     {
         5061       \underset{ 
         5062         \big(
         5063           (-) \times W\underline{\mathcal{G}} 
         5064         \big) 
         5065         \big/
         5066         \underline{\mathcal{G}}
         5067       }
         5068       {\longrightarrow}}
         5069     {
         5070       \overset{
         5071         (-) 
         5072           \times_{\overline{W}\underline{\mathcal{G}}}
         5073         W\underline{\mathcal{G}}
         5074       }{\longleftarrow}
         5075     }
         5076     {\bot}
         5077     sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}}
         5078 
         5079 </annotation></semantics></math></div>
         5080 <p>\end{prop} \begin{proof}</p>
         5081 
         5082 <p>The required <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> is the composite of the following sequence of <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijections</a>:</p>
         5083 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo stretchy='false'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mi>p</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><msub><mi>Hom</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></msub><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>Y</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>Y</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mi>Y</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         5084   \begin{aligned}
         5085     Hom
         5086     \Big(
         5087       (\underline{X},p),
         5088       \,
         5089       \big(
         5090         \underline{Y} \times W\underline{\mathcal{G}}  
         5091       \big) / \underline{\mathcal{G}}
         5092     \Big)
         5093     &amp; 
         5094     \;\simeq\;
         5095     Hom
         5096     \Big(
         5097       \underline{X},
         5098       \,
         5099       \big(
         5100         \underline{Y} \times W\underline{\mathcal{G}}  
         5101       \big) / \underline{\mathcal{G}}
         5102     \Big)
         5103     \underset{
         5104     Hom
         5105     \Big(
         5106       \underline{X},
         5107       \,
         5108       \overline{W} \underline{\mathcal{G}}
         5109     \Big)
         5110     }{\times}
         5111     \{p\}
         5112     \\
         5113     &amp; \;\simeq\;
         5114     \int^c
         5115     Hom
         5116     \Big(
         5117       \underline{X}(c),
         5118       \,
         5119       \big(
         5120         \underline{Y}(c) \times W\underline{\mathcal{G}(c)}  
         5121       \big) / \underline{\mathcal{G}}(c)
         5122     \Big)
         5123     \underset{
         5124     \int^c
         5125     Hom
         5126     \Big(
         5127       \underline{X}(c),
         5128       \,
         5129       \overline{W} \underline{\mathcal{G}}(c)
         5130     \Big)
         5131     }{\times}
         5132     \{p\}
         5133     \\
         5134     &amp; \;\simeq\;
         5135     \int^c
         5136     \left(
         5137     Hom
         5138     \Big(
         5139       \underline{X}(c),
         5140       \,
         5141       \big(
         5142         \underline{Y}(c) \times W\underline{\mathcal{G}(c)}  
         5143       \big) / \underline{\mathcal{G}}(c)
         5144     \Big)
         5145     \underset{
         5146     Hom
         5147     \Big(
         5148       \underline{X}(c),
         5149       \,
         5150       \overline{W} \underline{\mathcal{G}}(c)
         5151     \Big)
         5152     }{\times}
         5153     \{p(c)\}
         5154     \right)
         5155     \\
         5156     &amp; \;\simeq\;
         5157     \int^c 
         5158     Hom_{/\overline{W}\underline{\mathcal{G}}(c)}
         5159     \Big(
         5160       \big(X(c), p(c)\big),
         5161       \,
         5162       \big(
         5163         Y(c) \times \overline{W} \mathcal{G}(c)
         5164       \big)\big/ \mathcal{G}(c)
         5165     \Big)
         5166     \\ 
         5167     &amp; \;\simeq\;
         5168     \int^c
         5169     \left(
         5170       \underline{\mathcal{G}}(c)
         5171       Acts(sSet)
         5172       \big(
         5173         X(c) 
         5174           \underset{ \overline{W}\underline{\mathcal{G}}(c) }{\times}
         5175         W \underline{\mathcal{G}}(c),
         5176         \,
         5177         Y(c)
         5178       \big)
         5179     \right)
         5180     \\
         5181     &amp; \;\simeq\;
         5182     \mathcal{G}Acts(sPSh(\mathcal{C}))
         5183     \big(
         5184       X 
         5185         \underset{\overline{W}\underline{\mathcal{G}}}{\times}
         5186       W \underline{\mathcal{G}},
         5187       \,
         5188       Y
         5189     \big)
         5190   \end{aligned}
         5191 
         5192 </annotation></semantics></math></div>
         5193 <p>Here:</p>
         5194 
         5195 <ul>
         5196 <li>
         5197 <p>the first step is the characterization of hom-sets of a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a> as a <a class='existingWikiWord' href='/nlab/show/fiber'>fiber</a> of the <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the underlying category;</p>
         5198 </li>
         5199 
         5200 <li>
         5201 <p>the second step is the description of the hom-set of a <a class='existingWikiWord' href='/nlab/show/functor+category'>functor category</a> as an <a class='existingWikiWord' href='/nlab/show/end'>end</a> of object-wise hom-sets;</p>
         5202 </li>
         5203 
         5204 <li>
         5205 <p>the third step uses that <a class='existingWikiWord' href='/nlab/show/end'>ends</a> are <a class='existingWikiWord' href='/nlab/show/limit'>limits</a> and <a class='existingWikiWord' href='/nlab/show/limits+commute+with+limits'>hence commute</a> the the <a class='existingWikiWord' href='/nlab/show/pullback'>fiber product</a>;</p>
         5206 </li>
         5207 
         5208 <li>
         5209 <p>the fourth step recognizes again, now object-wise, the hom-set in a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a>;</p>
         5210 </li>
         5211 
         5212 <li>
         5213 <p>the fifth step is objectwise the <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> of (eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace);</p>
         5214 </li>
         5215 
         5216 <li>
         5217 <p>the sixth step recognizes again the <a class='existingWikiWord' href='/nlab/show/end'>end</a> as computing the hom-set in (a subcategory of) a functor category:</p>
         5218 </li>
         5219 </ul>
         5220 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd></mtr> <mtr><mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
         5221   \array{
         5222     \underline{\mathcal{G}}Acts
         5223     \big(
         5224       A, \, B
         5225     \big)
         5226     &amp;\longrightarrow&amp;
         5227     \mathcal{G}(c_1)Acts
         5228     \big(
         5229        A(c_1), \, B(c_1)
         5230     \big)
         5231     \\
         5232     \big\downarrow
         5233     &amp;&amp;
         5234     \big\downarrow
         5235     \\
         5236     \mathcal{G}(c_2)Acts
         5237     \big(
         5238       A(c_2), \, B(c_2)
         5239     \big)
         5240     &amp;\longrightarrow&amp;
         5241     Hom
         5242     \big(
         5243       A(c_1), \, B(c_2)
         5244     \big)
         5245   }
         5246 
         5247 </annotation></semantics></math></div>
         5248 <p>\end{proof}</p>
         5249 
         5250 <p>\linebreak</p>
         5251 
         5252 <p>\linebreak</p>
         5253 
         5254 <p>added the observation (<a href='https://ncatlab.org/nlab/show/Borel+model+structure#GeneralizationToSimplicialPresheaves'>here</a>) that the adjunction for simplicial groups</p>
         5255 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><mi>𝒢</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>𝒢</mi></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow></msub><mi>W</mi><mi>𝒢</mi></mrow></mover></munderover><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>
         5256     \mathcal{G} Acts(sSet)
         5257       \underoverset
         5258         {\underset{ \big((-) \times W \mathcal{G}\big)/\mathcal{G} }{\longrightarrow}}
         5259         {\overset{ (-) \times_{\overline{W}\mathcal{G}} W \mathcal{G}  }{\longleftarrow}}
         5260         {\bot}
         5261     sSet_{/\overline{W}\mathcal{G}}
         5262 
         5263 </annotation></semantics></math></div>
         5264 <p>generalizes to one for presheaves of simplicial groups</p>
         5265 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'>
         5266   \underline{\mathcal{G}}
         5267   Acts
         5268   \big(
         5269     sPSh(\mathcal{C})
         5270   \big)  
         5271   \underoverset
         5272     {
         5273       \underset{ 
         5274         \big(
         5275           (-) \times W\underline{\mathcal{G}} 
         5276         \big) 
         5277         \big/
         5278         \underline{\mathcal{G}}
         5279       }
         5280       {\longrightarrow}}
         5281     {
         5282       \overset{
         5283         (-) 
         5284           \times_{\overline{W}\underline{\mathcal{G}}}
         5285         W\underline{\mathcal{G}}
         5286       }{\longleftarrow}
         5287     }
         5288     {\bot}
         5289     sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}}
         5290 
         5291 </annotation></semantics></math></div>      </div>
         5292     </content>
         5293   </entry>
         5294   <entry>
         5295     <title type="html">simplicial presheaf</title>
         5296     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/simplicial+presheaf"/>
         5297     <updated>2021-07-01T14:31:25Z</updated>
         5298     <published>2009-01-29T18:34:04Z</published>
         5299     <id>tag:ncatlab.org,2009-01-29:nLab,simplicial+presheaf</id>
         5300     <author>
         5301       <name>Urs Schreiber</name>
         5302     </author>
         5303     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/simplicial+presheaf">
         5304       <div xmlns="http://www.w3.org/1999/xhtml">
         5305 <div class='rightHandSide'>
         5306 <div class='toc clickDown' tabindex='0'>
         5307 <h3 id='context'>Context</h3>
         5308 
         5309 <h4 id='homotopy_theory'>Homotopy theory</h4>
         5310 
         5311 <div class='hide'>
         5312 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p>
         5313 
         5314 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p>
         5315 
         5316 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p>
         5317 
         5318 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p>
         5319 
         5320 <p><strong>Introductions</strong></p>
         5321 
         5322 <ul>
         5323 <li>
         5324 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p>
         5325 </li>
         5326 
         5327 <li>
         5328 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p>
         5329 </li>
         5330 
         5331 <li>
         5332 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p>
         5333 </li>
         5334 </ul>
         5335 
         5336 <p><strong>Definitions</strong></p>
         5337 
         5338 <ul>
         5339 <li>
         5340 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p>
         5341 </li>
         5342 
         5343 <li>
         5344 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p>
         5345 </li>
         5346 
         5347 <li>
         5348 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p>
         5349 </li>
         5350 
         5351 <li>
         5352 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p>
         5353 
         5354 <ul>
         5355 <li>
         5356 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p>
         5357 
         5358 <ul>
         5359 <li>
         5360 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p>
         5361 </li>
         5362 
         5363 <li>
         5364 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p>
         5365 </li>
         5366 
         5367 <li>
         5368 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p>
         5369 </li>
         5370 </ul>
         5371 </li>
         5372 
         5373 <li>
         5374 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p>
         5375 
         5376 <ul>
         5377 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li>
         5378 </ul>
         5379 </li>
         5380 </ul>
         5381 </li>
         5382 
         5383 <li>
         5384 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p>
         5385 
         5386 <ul>
         5387 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li>
         5388 </ul>
         5389 </li>
         5390 </ul>
         5391 
         5392 <p><strong>Paths and cylinders</strong></p>
         5393 
         5394 <ul>
         5395 <li>
         5396 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p>
         5397 
         5398 <ul>
         5399 <li>
         5400 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p>
         5401 </li>
         5402 
         5403 <li>
         5404 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p>
         5405 </li>
         5406 </ul>
         5407 </li>
         5408 
         5409 <li>
         5410 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p>
         5411 
         5412 <ul>
         5413 <li>
         5414 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p>
         5415 </li>
         5416 
         5417 <li>
         5418 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p>
         5419 </li>
         5420 
         5421 <li>
         5422 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p>
         5423 </li>
         5424 </ul>
         5425 </li>
         5426 
         5427 <li>
         5428 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p>
         5429 
         5430 <ul>
         5431 <li>
         5432 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p>
         5433 </li>
         5434 
         5435 <li>
         5436 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p>
         5437 </li>
         5438 </ul>
         5439 </li>
         5440 </ul>
         5441 
         5442 <p><strong>Homotopy groups</strong></p>
         5443 
         5444 <ul>
         5445 <li>
         5446 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p>
         5447 
         5448 <ul>
         5449 <li>
         5450 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p>
         5451 
         5452 <ul>
         5453 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li>
         5454 </ul>
         5455 </li>
         5456 
         5457 <li>
         5458 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p>
         5459 </li>
         5460 
         5461 <li>
         5462 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p>
         5463 </li>
         5464 
         5465 <li>
         5466 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p>
         5467 </li>
         5468 </ul>
         5469 </li>
         5470 
         5471 <li>
         5472 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p>
         5473 
         5474 <ul>
         5475 <li>
         5476 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p>
         5477 
         5478 <ul>
         5479 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li>
         5480 </ul>
         5481 </li>
         5482 
         5483 <li>
         5484 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p>
         5485 </li>
         5486 
         5487 <li>
         5488 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p>
         5489 </li>
         5490 </ul>
         5491 </li>
         5492 
         5493 <li>
         5494 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p>
         5495 
         5496 <ul>
         5497 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li>
         5498 </ul>
         5499 </li>
         5500 </ul>
         5501 
         5502 <p><strong>Basic facts</strong></p>
         5503 
         5504 <ul>
         5505 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li>
         5506 </ul>
         5507 
         5508 <p><strong>Theorems</strong></p>
         5509 
         5510 <ul>
         5511 <li>
         5512 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p>
         5513 </li>
         5514 
         5515 <li>
         5516 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p>
         5517 </li>
         5518 
         5519 <li>
         5520 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p>
         5521 </li>
         5522 
         5523 <li>
         5524 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p>
         5525 </li>
         5526 
         5527 <li>
         5528 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p>
         5529 </li>
         5530 
         5531 <li>
         5532 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead&#39;s theorem</a></p>
         5533 </li>
         5534 
         5535 <li>
         5536 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p>
         5537 </li>
         5538 
         5539 <li>
         5540 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p>
         5541 </li>
         5542 
         5543 <li>
         5544 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p>
         5545 </li>
         5546 </ul>
         5547 </div>
         5548 
         5549 <h4 id='topos_theory'><math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-Topos Theory</h4>
         5550 
         5551 <div class='hide'>
         5552 <p><strong><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-topos+theory'>(∞,1)-topos theory</a></strong></p>
         5553 
         5554 <h2 id='background'>Background</h2>
         5555 
         5556 <ul>
         5557 <li>
         5558 <p><a class='existingWikiWord' href='/nlab/show/sheaf+and+topos+theory'>sheaf and topos theory</a></p>
         5559 </li>
         5560 
         5561 <li>
         5562 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p>
         5563 </li>
         5564 
         5565 <li>
         5566 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-functor'>(∞,1)-functor</a></p>
         5567 </li>
         5568 
         5569 <li>
         5570 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-presheaf'>(∞,1)-presheaf</a></p>
         5571 </li>
         5572 
         5573 <li>
         5574 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-presheaves'>(∞,1)-category of (∞,1)-presheaves</a></p>
         5575 </li>
         5576 </ul>
         5577 
         5578 <h2 id='definitions'>Definitions</h2>
         5579 
         5580 <ul>
         5581 <li>
         5582 <p><a class='existingWikiWord' href='/nlab/show/elementary+%28infinity%2C1%29-topos'>elementary (∞,1)-topos</a></p>
         5583 </li>
         5584 
         5585 <li>
         5586 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-site'>(∞,1)-site</a></p>
         5587 </li>
         5588 
         5589 <li>
         5590 <p><a class='existingWikiWord' href='/nlab/show/reflective+sub-%28infinity%2C1%29-category'>reflective sub-(∞,1)-category</a></p>
         5591 
         5592 <ul>
         5593 <li>
         5594 <p><a class='existingWikiWord' href='/nlab/show/localization+of+an+%28infinity%2C1%29-category'>localization of an (∞,1)-category</a></p>
         5595 </li>
         5596 
         5597 <li>
         5598 <p><a class='existingWikiWord' href='/nlab/show/topological+localization'>topological localization</a></p>
         5599 </li>
         5600 
         5601 <li>
         5602 <p><a class='existingWikiWord' href='/nlab/show/hypercompletion'>hypercompletion</a></p>
         5603 </li>
         5604 </ul>
         5605 </li>
         5606 
         5607 <li>
         5608 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(∞,1)-category of (∞,1)-sheaves</a></p>
         5609 
         5610 <ul>
         5611 <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-sheaf'>(∞,1)-sheaf</a>/<a class='existingWikiWord' href='/nlab/show/infinity-stack'>∞-stack</a>/<a class='existingWikiWord' href='/nlab/show/derived+stack'>derived stack</a></li>
         5612 </ul>
         5613 </li>
         5614 
         5615 <li>
         5616 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-topos'>(∞,1)-topos</a></p>
         5617 </li>
         5618 
         5619 <li>
         5620 <p><a class='existingWikiWord' href='/nlab/show/%28n%2C1%29-topos'>(n,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/n-topos'>n-topos</a></p>
         5621 
         5622 <ul>
         5623 <li>
         5624 <p><a class='existingWikiWord' href='/nlab/show/truncated+object'>n-truncated object</a></p>
         5625 </li>
         5626 
         5627 <li>
         5628 <p><a class='existingWikiWord' href='/nlab/show/connected+object'>n-connected object</a></p>
         5629 </li>
         5630 
         5631 <li>
         5632 <p><a class='existingWikiWord' href='/nlab/show/topos'>(1,1)-topos</a></p>
         5633 
         5634 <ul>
         5635 <li>
         5636 <p><a class='existingWikiWord' href='/nlab/show/presheaf'>presheaf</a></p>
         5637 </li>
         5638 
         5639 <li>
         5640 <p><a class='existingWikiWord' href='/nlab/show/sheaf'>sheaf</a></p>
         5641 </li>
         5642 </ul>
         5643 </li>
         5644 
         5645 <li>
         5646 <p><a class='existingWikiWord' href='/nlab/show/2-topos'>(2,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/2-topos'>2-topos</a></p>
         5647 
         5648 <ul>
         5649 <li><a class='existingWikiWord' href='/nlab/show/%282%2C1%29-presheaf'>(2,1)-presheaf</a></li>
         5650 </ul>
         5651 </li>
         5652 </ul>
         5653 </li>
         5654 
         5655 <li>
         5656 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-quasitopos'>(∞,1)-quasitopos</a></p>
         5657 
         5658 <ul>
         5659 <li>
         5660 <p><a class='existingWikiWord' href='/nlab/show/separated+%28infinity%2C1%29-presheaf'>separated (∞,1)-presheaf</a></p>
         5661 </li>
         5662 
         5663 <li>
         5664 <p><a class='existingWikiWord' href='/nlab/show/quasitopos'>quasitopos</a></p>
         5665 
         5666 <ul>
         5667 <li><a class='existingWikiWord' href='/nlab/show/separated+presheaf'>separated presheaf</a></li>
         5668 </ul>
         5669 </li>
         5670 
         5671 <li>
         5672 <p><span class='newWikiWord'>(2,1)-quasitopos<a href='/nlab/new/%282%2C1%29-quasitopos'>?</a></span></p>
         5673 
         5674 <ul>
         5675 <li><a class='existingWikiWord' href='/nlab/show/separated+%282%2C1%29-presheaf'>separated (2,1)-presheaf</a></li>
         5676 </ul>
         5677 </li>
         5678 </ul>
         5679 </li>
         5680 
         5681 <li>
         5682 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C2%29-topos'>(∞,2)-topos</a></p>
         5683 </li>
         5684 
         5685 <li>
         5686 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-topos'>(∞,n)-topos</a></p>
         5687 </li>
         5688 </ul>
         5689 
         5690 <h2 id='characterization'>Characterization</h2>
         5691 
         5692 <ul>
         5693 <li>
         5694 <p><a class='existingWikiWord' href='/nlab/show/pullback-stable+colimit'>universal colimits</a></p>
         5695 </li>
         5696 
         5697 <li>
         5698 <p><a class='existingWikiWord' href='/nlab/show/%28sub%29object+classifier+in+an+%28infinity%2C1%29-topos'>object classifier</a></p>
         5699 </li>
         5700 
         5701 <li>
         5702 <p><a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>groupoid object in an (∞,1)-topos</a></p>
         5703 
         5704 <ul>
         5705 <li><a class='existingWikiWord' href='/nlab/show/effective+epimorphism'>effective epimorphism</a></li>
         5706 </ul>
         5707 </li>
         5708 </ul>
         5709 
         5710 <h2 id='morphisms'>Morphisms</h2>
         5711 
         5712 <ul>
         5713 <li>
         5714 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-geometric+morphism'>(∞,1)-geometric morphism</a></p>
         5715 </li>
         5716 
         5717 <li>
         5718 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29Topos'>(∞,1)Topos</a></p>
         5719 </li>
         5720 
         5721 <li>
         5722 <p><a class='existingWikiWord' href='/nlab/show/Lawvere+distribution'>Lawvere distribution</a></p>
         5723 </li>
         5724 </ul>
         5725 
         5726 <h2 id='extra_stuff_structure_and_property'>Extra stuff, structure and property</h2>
         5727 
         5728 <ul>
         5729 <li>
         5730 <p><a class='existingWikiWord' href='/nlab/show/hypercomplete+%28infinity%2C1%29-topos'>hypercomplete (∞,1)-topos</a></p>
         5731 
         5732 <ul>
         5733 <li>
         5734 <p><a class='existingWikiWord' href='/nlab/show/hypercomplete+object'>hypercomplete object</a></p>
         5735 </li>
         5736 
         5737 <li>
         5738 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead theorem</a></p>
         5739 </li>
         5740 </ul>
         5741 </li>
         5742 
         5743 <li>
         5744 <p><a class='existingWikiWord' href='/nlab/show/over-%28infinity%2C1%29-topos'>over-(∞,1)-topos</a></p>
         5745 </li>
         5746 
         5747 <li>
         5748 <p><a class='existingWikiWord' href='/nlab/show/n-localic+%28infinity%2C1%29-topos'>n-localic (∞,1)-topos</a></p>
         5749 </li>
         5750 
         5751 <li>
         5752 <p><a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>locally n-connected (n,1)-topos</a></p>
         5753 </li>
         5754 
         5755 <li>
         5756 <p><a class='existingWikiWord' href='/nlab/show/structured+%28infinity%2C1%29-topos'>structured (∞,1)-topos</a></p>
         5757 
         5758 <ul>
         5759 <li><a class='existingWikiWord' href='/nlab/show/geometry+%28for+structured+%28infinity%2C1%29-toposes%29'>geometry (for structured (∞,1)-toposes)</a></li>
         5760 </ul>
         5761 </li>
         5762 
         5763 <li>
         5764 <p><a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>locally ∞-connected (∞,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>∞-connected (∞,1)-topos</a></p>
         5765 </li>
         5766 
         5767 <li>
         5768 <p><a class='existingWikiWord' href='/nlab/show/%28%E2%88%9E%2C1%29-local+geometric+morphism'>local (∞,1)-topos</a></p>
         5769 
         5770 <ul>
         5771 <li><a class='existingWikiWord' href='/nlab/show/concrete+%28infinity%2C1%29-sheaf'>concrete (∞,1)-sheaf</a></li>
         5772 </ul>
         5773 </li>
         5774 
         5775 <li>
         5776 <p><a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></p>
         5777 </li>
         5778 </ul>
         5779 
         5780 <h2 id='models'>Models</h2>
         5781 
         5782 <ul>
         5783 <li>
         5784 <p><a class='existingWikiWord' href='/nlab/show/presentations+of+%28infinity%2C1%29-sheaf+%28infinity%2C1%29-toposes'>models for ∞-stack (∞,1)-toposes</a></p>
         5785 
         5786 <ul>
         5787 <li>
         5788 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p>
         5789 </li>
         5790 
         5791 <li>
         5792 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>model structure on functors</a></p>
         5793 </li>
         5794 
         5795 <li>
         5796 <p><a class='existingWikiWord' href='/nlab/show/model+site'>model site</a>/<a class='existingWikiWord' href='/nlab/show/sSet-site'>sSet-site</a></p>
         5797 </li>
         5798 
         5799 <li>
         5800 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p>
         5801 </li>
         5802 
         5803 <li>
         5804 <p><a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p>
         5805 </li>
         5806 
         5807 <li>
         5808 <p><a class='existingWikiWord' href='/nlab/show/Verity+on+descent+for+strict+omega-groupoid+valued+presheaves'>descent for presheaves with values in strict ∞-groupoids</a></p>
         5809 </li>
         5810 </ul>
         5811 </li>
         5812 </ul>
         5813 
         5814 <h2 id='constructions'>Constructions</h2>
         5815 
         5816 <p><strong>structures in a <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></strong></p>
         5817 
         5818 <ul>
         5819 <li>
         5820 <p><a class='existingWikiWord' href='/nlab/show/shape+of+an+%28infinity%2C1%29-topos'>shape</a> / <a class='existingWikiWord' href='/nlab/show/coshape+of+an+%28infinity%2C1%29-topos'>coshape</a></p>
         5821 </li>
         5822 
         5823 <li>
         5824 <p><a class='existingWikiWord' href='/nlab/show/cohomology'>cohomology</a></p>
         5825 </li>
         5826 
         5827 <li>
         5828 <p><a class='existingWikiWord' href='/nlab/show/homotopy+groups+in+an+%28infinity%2C1%29-topos'>homotopy</a></p>
         5829 
         5830 <ul>
         5831 <li>
         5832 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a>/<a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>of a locally ∞-connected (∞,1)-topos</a></p>
         5833 </li>
         5834 
         5835 <li>
         5836 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical</a>/<a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric</a> homotopy groups</p>
         5837 </li>
         5838 
         5839 <li>
         5840 <p><a class='existingWikiWord' href='/nlab/show/Postnikov+tower+in+an+%28infinity%2C1%29-category'>Postnikov tower</a></p>
         5841 </li>
         5842 
         5843 <li>
         5844 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+tower+in+an+%28infinity%2C1%29-topos'>Whitehead tower</a></p>
         5845 </li>
         5846 </ul>
         5847 </li>
         5848 
         5849 <li>
         5850 <p><a class='existingWikiWord' href='/nlab/show/function+algebras+on+infinity-stacks'>rational homotopy</a></p>
         5851 </li>
         5852 
         5853 <li>
         5854 <p><a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a></p>
         5855 
         5856 <ul>
         5857 <li>
         5858 <p><a class='existingWikiWord' href='/nlab/show/homotopy+dimension'>homotopy dimension</a></p>
         5859 </li>
         5860 
         5861 <li>
         5862 <p><a class='existingWikiWord' href='/nlab/show/cohomological+dimension'>cohomological dimension</a></p>
         5863 </li>
         5864 
         5865 <li>
         5866 <p><a class='existingWikiWord' href='/nlab/show/covering+dimension'>covering dimension</a></p>
         5867 </li>
         5868 
         5869 <li>
         5870 <p><a class='existingWikiWord' href='/nlab/show/Heyting+dimension'>Heyting dimension</a></p>
         5871 </li>
         5872 </ul>
         5873 </li>
         5874 </ul>
         5875 <div>
         5876 <p>
         5877   <a href='/nlab/edit/%28infinity%2C1%29-topos+-+contents'>Edit this sidebar</a>
         5878 </p>
         5879 </div></div>
         5880 </div>
         5881 </div>
         5882 
         5883 <h1 id='contents'>Contents</h1>
         5884 <div class='maruku_toc'><ul><li><a href='#definition'>Definition</a></li><li><a href='#interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</a></li><li><a href='#examples'>Examples</a></li><li><a href='#remarks'>Remarks</a></li><li><a href='#properties'>Properties</a></li><li><a href='#related_entries'>Related entries</a></li><li><a href='#references'>References</a></li></ul></div>
         5885 <h2 id='definition'>Definition</h2>
         5886 
         5887 <p><em>Simplicial presheaves</em> over some <a class='existingWikiWord' href='/nlab/show/site'>site</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> are</p>
         5888 
         5889 <ul>
         5890 <li><a class='existingWikiWord' href='/nlab/show/presheaf'>Presheaves</a> with values in the category <a class='existingWikiWord' href='/nlab/show/SimpSet'>SimpSet</a> of simplicial sets, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to \Simp\Set</annotation></semantics></math>, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to [\Delta^{op}, \Set]</annotation></semantics></math>;</li>
         5891 </ul>
         5892 
         5893 <p>or equivalently, using the Hom-<a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjunction</a> and symmetry of the <a class='existingWikiWord' href='/nlab/show/closed+monoidal+category'>closed monoidal structure</a> on <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a></p>
         5894 
         5895 <ul>
         5896 <li>simplicial objects in the category of presheaves, i.e. functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^{op} \to [S^{op},\Set]</annotation></semantics></math>.</li>
         5897 </ul>
         5898 
         5899 <h2 id='interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</h2>
         5900 
         5901 <p>Regarding <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>\Simp\Set</annotation></semantics></math> as a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> using the standard <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>model structure on simplicial sets</a> and inducing from that a model structure on <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S^{op}, \Simp\Set]</annotation></semantics></math> makes simplicial presheaves a model for <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-stack'>stacks</a>, as described at <a class='existingWikiWord' href='/nlab/show/infinity-stack+homotopically'>infinity-stack homotopically</a>.</p>
         5902 
         5903 <p>In more illustrative language this means that a simplicial presheaf on <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> can be regarded as an <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>groupoid</a> (in particular a <a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a>) whose space of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-morphisms is modeled on the objects of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> in the sense described at <a class='existingWikiWord' href='/nlab/show/space+and+quantity'>space and quantity</a>.</p>
         5904 
         5905 <h2 id='examples'>Examples</h2>
         5906 
         5907 <ul>
         5908 <li>
         5909 <p>Notice that most definitions of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-category'>category</a> the <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-category is itself defined to be a <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> with extra structure (in a <a class='existingWikiWord' href='/nlab/show/geometric+definition+of+higher+categories'>geometric definition of higher category</a>) or gives rise to a simplicial set under taking its <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> (in an <a class='existingWikiWord' href='/nlab/show/algebraic+definition+of+higher+categories'>algebraic definition of higher category</a>). So most notions of presheaves of higher categories will naturally induce presheaves of simplicial sets.</p>
         5910 </li>
         5911 
         5912 <li>
         5913 <p>In particular, regarding a <a class='existingWikiWord' href='/nlab/show/group'>group</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> as a one object category <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}G</annotation></semantics></math> and then taking the nerve <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi><mo stretchy='false'>)</mo><mo>∈</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>N(\mathbf{B}G) \in \Simp\Set</annotation></semantics></math> of these (the “classifying simplicial set of the group whose <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> is the <a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℬ</mi><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathcal{B}G</annotation></semantics></math>), which is clearly a functorial operation, turns any presheaf with values in groups into a simplicial presheaf.</p>
         5914 </li>
         5915 </ul>
         5916 
         5917 <h2 id='remarks'>Remarks</h2>
         5918 
         5919 <ul>
         5920 <li>There are various useful <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structures on the category of simplicial presheaves. See <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a>.</li>
         5921 </ul>
         5922 
         5923 <h2 id='properties'>Properties</h2>
         5924 
         5925 <p>Here are some basic but useful facts about simplicial presheaves.</p>
         5926 
         5927 <div class='un_prop'>
         5928 <h6 id='proposition'>Proposition</h6>
         5929 
         5930 <p>Every simplicial presheaf <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a> over a <a class='existingWikiWord' href='/nlab/show/diagram'>diagram</a> of <a class='existingWikiWord' href='/nlab/show/Set'>Set</a>-valued sheaves regarded as discrete simplicial sheaves.</p>
         5931 
         5932 <p>More precisely, for <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>:</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>X : S^{op} \to SSet</annotation></semantics></math> a simplicial presheaf, let <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo><mo>↪</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>SSet</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>D_X : \Delta^{op} \to [S^{op},Set] \hookrightarrow [S^{op},SSet]</annotation></semantics></math> be given by <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>↦</mo><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>D_X : [n] \mapsto X_n</annotation></semantics></math>. Then there is a weak equivalence</p>
         5933 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>D</mi> <mi>X</mi></msub><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo><mover><mo>→</mo><mo>≃</mo></mover><mi>X</mi><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         5934   hocolim_{[n] \in \Delta} D_X([n]) \stackrel{\simeq}{\to} X
         5935   \,.
         5936 
         5937 </annotation></semantics></math></div></div>
         5938 
         5939 <div class='proof'>
         5940 <h6 id='proof'>Proof</h6>
         5941 
         5942 <p>See for instance <a href='http://www.math.uiuc.edu/K-theory/0563/spre.pdf#page=6'>remark 2.1, p. 6</a></p>
         5943 
         5944 <ul>
         5945 <li><a class='existingWikiWord' href='/nlab/show/Daniel+Dugger'>Daniel Dugger</a>, <a class='existingWikiWord' href='/nlab/show/Sharon+Hollander'>Sharon Hollander</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Isaksen'>Daniel Isaksen</a>, <em>Hypercovers and simplicial presheaves</em>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 136 Issue 1, 2004 (<a href='https://arxiv.org/abs/math/0205027'>arXiv:math/0205027</a>, <a href='http://www.math.uiuc.edu/K-theory/0563'>K-theory:0563</a>, <a href='https://doi.org/10.1017/S0305004103007175'>doi:10.1017/S0305004103007175</a>)</li>
         5946 </ul>
         5947 
         5948 <p>(which is otherwise about <a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>).</p>
         5949 </div>
         5950 
         5951 <div class='un_cor'>
         5952 <h6 id='corollary'>Corollary</h6>
         5953 
         5954 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mo>:</mo><mo stretchy='false'>(</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><msup><mo stretchy='false'>)</mo> <mi>op</mi></msup><mo>×</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>[-,-] : (SSet^{S^{op}})^{op} \times SSet^{S^{op}} \to SSet</annotation></semantics></math> be the canonical <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>SSet</annotation></semantics></math>-enrichment of the category of simplicial presheaves (i.e. the assignment of <a class='existingWikiWord' href='/nlab/show/SimpSet'>SSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor+category'>enriched functor categories</a>).</p>
         5955 
         5956 <p>It follows in particular from the above that every such <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[X,A]</annotation></semantics></math> of simplical presheaves can be written as a <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy limit</a> (in <a class='existingWikiWord' href='/nlab/show/SimpSet'>SSet</a> for instance realized as a <a class='existingWikiWord' href='/nlab/show/weighted+limit'>weighted limit</a>, as described there) over evaluations of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p>
         5957 </div>
         5958 
         5959 <div class='proof'>
         5960 <h6 id='proof_2'>Proof</h6>
         5961 
         5962 <p>First the above yields</p>
         5963 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd> <mtd><mo>≃</mo><mo stretchy='false'>[</mo><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         5964   \begin{aligned}
         5965      [X, A ]  &amp; \simeq [ hocolim_{[n] \in \Delta} X_n , A ]
         5966   \\
         5967       &amp; holim_{[n] \in \Delta} [X_n, A]
         5968   \end{aligned}
         5969   \,.
         5970 
         5971 </annotation></semantics></math></div>
         5972 <p>Next from the <a class='existingWikiWord' href='/nlab/show/co-Yoneda+lemma'>co-Yoneda lemma</a> we know that the <a class='existingWikiWord' href='/nlab/show/Set'>Set</a>-valued presheaves <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>X_n</annotation></semantics></math> are in turn colimits over representables in <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math>, so that</p>
         5973 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>colim</mi> <mi>i</mi></msub><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mo stretchy='false'>[</mo><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         5974   \begin{aligned}
         5975      \cdots &amp; \simeq 
         5976      holim_{[n] \in \Delta} 
         5977      [ colim_i U_{i}, A]
         5978      \\
         5979      &amp; \simeq
         5980      holim_{[n] \in \Delta} lim_i
         5981      [  U_{i}, A]       
         5982   \end{aligned}
         5983   \,.
         5984 
         5985 </annotation></semantics></math></div>
         5986 <p>And finally the <a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a> reduces this to</p>
         5987 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>U</mi> <mi>i</mi></msub><mo stretchy='false'>)</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'>
         5988   \begin{aligned}
         5989      \cdots
         5990       &amp; 
         5991      holim_{[n] \in \Delta} lim_i
         5992      A(U_i)            
         5993   \end{aligned}
         5994   \,.
         5995 
         5996 </annotation></semantics></math></div></div>
         5997 
         5998 <p>Notice that these kinds of computations are in particular often used when checking/computing <a class='existingWikiWord' href='/nlab/show/descent'>descent and codescent</a> along a <a class='existingWikiWord' href='/nlab/show/cover'>cover</a> or <a class='existingWikiWord' href='/nlab/show/hypercover'>hypercover</a>. For more on that in the context of simplicial presheaves see <a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>.</p>
         5999 
         6000 <h2 id='related_entries'>Related entries</h2>
         6001 
         6002 <ul>
         6003 <li>
         6004 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p>
         6005 </li>
         6006 
         6007 <li>
         6008 <p><a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p>
         6009 </li>
         6010 
         6011 <li>
         6012 <p><a class='existingWikiWord' href='/nlab/show/sheaf+of+spectra'>presheaf of spectra</a></p>
         6013 </li>
         6014 </ul>
         6015 
         6016 <p>Applications appear for instance at</p>
         6017 
         6018 <ul>
         6019 <li><a class='existingWikiWord' href='/nlab/show/geometric+infinity-function+theory'>geometric infinity-function theory</a></li>
         6020 </ul>
         6021 
         6022 <h2 id='references'>References</h2>
         6023 
         6024 <p>The original articles are</p>
         6025 
         6026 <ul>
         6027 <li>
         6028 <p><a class='existingWikiWord' href='/nlab/show/Kenneth+Brown'>Kenneth S. Brown</a>, <em>Abstract homotopy theory and generalized sheaf cohomology</em>. Transactions of the American Mathematical Society 186 (1973), 419-419. <a href='http://dx.doi.org/10.1090/s0002-9947-1973-0341469-9'>doi</a>.</p>
         6029 </li>
         6030 
         6031 <li>
         6032 <p><a class='existingWikiWord' href='/nlab/show/Kenneth+Brown'>Kenneth S. Brown</a>, <a class='existingWikiWord' href='/nlab/show/Stephen+M.+Gersten'>Stephen M. Gersten</a>, <em>Algebraic K-theory as generalized sheaf cohomology</em>. In: Higher K-Theories. Lecture Notes in Mathematics (1973), 266–292. <a href='http://dx.doi.org/10.1007/bfb0067062'>doi</a>.</p>
         6033 </li>
         6034 
         6035 <li>
         6036 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Simplicial objects in a Grothendieck topos</em>. In: Applications of algebraic K-theory to algebraic geometry and number theory. Contemporary Mathematics (1986), 193-239. <a href='http://dx.doi.org/10.1090/conm/055.1/862637'>doi</a></p>
         6037 </li>
         6038 
         6039 <li>
         6040 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Simplical presheaves</em>. Journal of Pure and Applied Algebra 47:1 (1987), 35-87. <a href='http://dx.doi.org/10.1016/0022-4049(87)90100-9'>doi</a></p>
         6041 </li>
         6042 </ul>
         6043 
         6044 <p>A modern expository account is</p>
         6045 
         6046 <ul>
         6047 <li><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>John F. Jardine</a>, <em>Local Homotopy Theory</em>, Springer, 2015. <a href='http://dx.doi.org/10.1007/978-1-4939-2300-7'>doi</a>.</li>
         6048 </ul>
         6049 
         6050 <p>Further articles:</p>
         6051 
         6052 <ul>
         6053 <li>
         6054 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Stacks and the homotopy theory of simplicial sheaves</em>. Homology, Homotopy and Applications 3:2 (2001), 361-384. <a href='http://dx.doi.org/10.4310/hha.2001.v3.n2.a5'>doi</a>.</p>
         6055 </li>
         6056 
         6057 <li>
         6058 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Fields Lectures: Simplicial presheaves</em>. <a href='https://www.uwo.ca/math/faculty/jardine/courses/fields/fields-01.pdf'>PDF</a>.</p>
         6059 </li>
         6060 </ul>
         6061 
         6062 <p>For their interpretation in the more general context of <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(infinity,1)-sheaves</a> see Section 6.5.2 of</p>
         6063 
         6064 <ul>
         6065 <li><a class='existingWikiWord' href='/nlab/show/Jacob+Lurie'>Jacob Lurie</a>, <a class='existingWikiWord' href='/nlab/show/Higher+Topos+Theory'>Higher Topos Theory</a>.</li>
         6066 </ul>
         6067 
         6068 <p>
         6069 </p>
         6070 
         6071 <p>
         6072  
         6073 </p>
         6074 
         6075 <p>
         6076 </p>      </div>
         6077     </content>
         6078   </entry>
         6079   <entry>
         6080     <title type="html">Milky Way</title>
         6081     <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Milky+Way"/>
         6082     <updated>2021-07-01T10:22:24Z</updated>
         6083     <published>2019-04-10T13:55:53Z</published>
         6084     <id>tag:ncatlab.org,2019-04-10:nLab,Milky+Way</id>
         6085     <author>
         6086       <name>Urs Schreiber</name>
         6087     </author>
         6088     <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Milky+Way">
         6089       <div xmlns="http://www.w3.org/1999/xhtml">
         6090 <div class='rightHandSide'>
         6091 <div class='toc clickDown' tabindex='0'>
         6092 <h3 id='context'>Context</h3>
         6093 
         6094 <h4 id='physics'>Physics</h4>
         6095 
         6096 <div class='hide'>
         6097 <p><strong><a class='existingWikiWord' href='/nlab/show/physics'>physics</a></strong>, <a class='existingWikiWord' href='/nlab/show/mathematical+physics'>mathematical physics</a>, <a class='existingWikiWord' href='/nlab/show/philosophy+of+physics'>philosophy of physics</a></p>
         6098 
         6099 <h2 id='surveys_textbooks_and_lecture_notes'>Surveys, textbooks and lecture notes</h2>
         6100 
         6101 <ul>
         6102 <li>
         6103 <p><em><a class='existingWikiWord' href='/nlab/show/higher+category+theory+and+physics'>(higher) category theory and physics</a></em></p>
         6104 </li>
         6105 
         6106 <li>
         6107 <p><em><a class='existingWikiWord' href='/nlab/show/geometry+of+physics'>geometry of physics</a></em></p>
         6108 </li>
         6109 
         6110 <li>
         6111 <p><a class='existingWikiWord' href='/nlab/show/books+and+reviews+in+mathematical+physics'>books and reviews</a>, <a class='existingWikiWord' href='/nlab/show/physics+resources'>physics resources</a></p>
         6112 </li>
         6113 </ul>
         6114 <hr/>
         6115 <p><a class='existingWikiWord' href='/nlab/show/theory+%28physics%29'>theory (physics)</a>, <a class='existingWikiWord' href='/nlab/show/model+%28in+theoretical+physics%29'>model (physics)</a></p>
         6116 
         6117 <p><a class='existingWikiWord' href='/nlab/show/experimental+observation'>experiment</a>, <a class='existingWikiWord' href='/nlab/show/measurement'>measurement</a>, <a class='existingWikiWord' href='/nlab/show/computable+physics'>computable physics</a></p>
         6118 
         6119 <ul>
         6120 <li>
         6121 <p><strong><a class='existingWikiWord' href='/nlab/show/mechanics'>mechanics</a></strong></p>
         6122 
         6123 <ul>
         6124 <li>
         6125 <p><a class='existingWikiWord' href='/nlab/show/mass'>mass</a>, <a class='existingWikiWord' href='/nlab/show/charge'>charge</a>, <a class='existingWikiWord' href='/nlab/show/momentum'>momentum</a>, <a class='existingWikiWord' href='/nlab/show/angular+momentum'>angular momentum</a>, <a class='existingWikiWord' href='/nlab/show/moment+of+inertia'>moment of inertia</a></p>
         6126 </li>
         6127 
         6128 <li>
         6129 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian+dynamics+on+Lie+groups'>dynamics on Lie groups</a></p>
         6130 
         6131 <ul>
         6132 <li><a class='existingWikiWord' href='/nlab/show/rigid+body+dynamics'>rigid body dynamics</a></li>
         6133 </ul>
         6134 </li>
         6135 </ul>
         6136 </li>
         6137 
         6138 <li>
         6139 <p><a class='existingWikiWord' href='/nlab/show/field+%28physics%29'>field (physics)</a></p>
         6140 
         6141 <ul>
         6142 <li>
         6143 <p><a class='existingWikiWord' href='/nlab/show/Lagrangian+density'>Lagrangian mechanics</a></p>
         6144 
         6145 <ul>
         6146 <li>
         6147 <p><a class='existingWikiWord' href='/nlab/show/configuration+space'>configuration space</a>, <a class='existingWikiWord' href='/nlab/show/state'>state</a></p>
         6148 </li>
         6149 
         6150 <li>
         6151 <p><a class='existingWikiWord' href='/nlab/show/action+functional'>action functional</a>, <a class='existingWikiWord' href='/nlab/show/Lagrangian+density'>Lagrangian</a></p>
         6152 </li>
         6153 
         6154 <li>
         6155 <p><a class='existingWikiWord' href='/nlab/show/phase+space'>covariant phase space</a>, <a class='existingWikiWord' href='/nlab/show/Euler-Lagrange+equation'>Euler-Lagrange equations</a></p>
         6156 </li>
         6157 </ul>
         6158 </li>
         6159 
         6160 <li>
         6161 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian+mechanics'>Hamiltonian mechanics</a></p>
         6162 
         6163 <ul>
         6164 <li>
         6165 <p><a class='existingWikiWord' href='/nlab/show/phase+space'>phase space</a></p>
         6166 </li>
         6167 
         6168 <li>
         6169 <p><a class='existingWikiWord' href='/nlab/show/symplectic+geometry'>symplectic geometry</a></p>
         6170 
         6171 <ul>
         6172 <li>
         6173 <p><a class='existingWikiWord' href='/nlab/show/Poisson+manifold'>Poisson manifold</a></p>
         6174 </li>
         6175 
         6176 <li>
         6177 <p><a class='existingWikiWord' href='/nlab/show/symplectic+manifold'>symplectic manifold</a></p>
         6178 </li>
         6179 
         6180 <li>
         6181 <p><a class='existingWikiWord' href='/nlab/show/symplectic+groupoid'>symplectic groupoid</a></p>
         6182 </li>
         6183 </ul>
         6184 </li>
         6185 
         6186 <li>
         6187 <p><a class='existingWikiWord' href='/nlab/show/multisymplectic+geometry'>multisymplectic geometry</a></p>
         6188 
         6189 <ul>
         6190 <li><a class='existingWikiWord' href='/nlab/show/symplectic+Lie+n-algebroid'>n-symplectic manifold</a></li>
         6191 </ul>
         6192 </li>
         6193 </ul>
         6194 </li>
         6195 
         6196 <li>
         6197 <p><a class='existingWikiWord' href='/nlab/show/spacetime'>spacetime</a></p>
         6198 
         6199 <ul>
         6200 <li>
         6201 <p><a class='existingWikiWord' href='/nlab/show/smooth+Lorentzian+space'>smooth Lorentzian manifold</a></p>
         6202 </li>
         6203 
         6204 <li>
         6205 <p><a class='existingWikiWord' href='/nlab/show/special+relativity'>special relativity</a></p>
         6206 </li>
         6207 
         6208 <li>
         6209 <p><a class='existingWikiWord' href='/nlab/show/general+relativity'>general relativity</a></p>
         6210 </li>
         6211 
         6212 <li>
         6213 <p><a class='existingWikiWord' href='/nlab/show/gravity'>gravity</a></p>
         6214 
         6215 <ul>
         6216 <li>
         6217 <p><a class='existingWikiWord' href='/nlab/show/supergravity'>supergravity</a>, <a class='existingWikiWord' href='/nlab/show/dilaton'>dilaton gravity</a></p>
         6218 </li>
         6219 
         6220 <li>
         6221 <p><a class='existingWikiWord' href='/nlab/show/black+hole'>black hole</a></p>
         6222 </li>
         6223 </ul>
         6224 </li>
         6225 </ul>
         6226 </li>
         6227 </ul>
         6228 </li>
         6229 
         6230 <li>
         6231 <p><strong><a class='existingWikiWord' href='/nlab/show/classical+field+theory'>Classical field theory</a></strong></p>
         6232 
         6233 <ul>
         6234 <li>
         6235 <p><a class='existingWikiWord' href='/nlab/show/classical+physics'>classical physics</a></p>
         6236 
         6237 <ul>
         6238 <li><a class='existingWikiWord' href='/nlab/show/classical+mechanics'>classical mechanics</a></li>
         6239 
         6240 <li><a class='existingWikiWord' href='/nlab/show/wave'>waves</a> and <a class='existingWikiWord' href='/nlab/show/optics'>optics</a></li>
         6241 
         6242 <li><a class='existingWikiWord' href='/nlab/show/thermodynamics'>thermodynamics</a></li>
         6243 </ul>
         6244 </li>
         6245 </ul>
         6246 </li>
         6247 
         6248 <li>
         6249 <p><strong><a class='existingWikiWord' href='/nlab/show/quantum+mechanics'>Quantum Mechanics</a></strong></p>
         6250 
         6251 <ul>
         6252 <li>
         6253 <p><a class='existingWikiWord' href='/nlab/show/finite+quantum+mechanics+in+terms+of+dagger-compact+categories'>in terms of ∞-compact categories</a></p>
         6254 </li>
         6255 
         6256 <li>
         6257 <p><a class='existingWikiWord' href='/nlab/show/quantum+information'>quantum information</a></p>
         6258 </li>
         6259 
         6260 <li>
         6261 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian'>Hamiltonian operator</a></p>
         6262 </li>
         6263 
         6264 <li>
         6265 <p><a class='existingWikiWord' href='/nlab/show/density+matrix'>density matrix</a></p>
         6266 </li>
         6267 
         6268 <li>
         6269 <p><a class='existingWikiWord' href='/nlab/show/Kochen-Specker+theorem'>Kochen-Specker theorem</a></p>
         6270 </li>
         6271 
         6272 <li>
         6273 <p><a class='existingWikiWord' href='/nlab/show/Bell%27s+theorem'>Bell&#39;s theorem</a></p>
         6274 </li>
         6275 
         6276 <li>
         6277 <p><a class='existingWikiWord' href='/nlab/show/Gleason%27s+theorem'>Gleason&#39;s theorem</a></p>
         6278 </li>
         6279 </ul>
         6280 </li>
         6281 
         6282 <li>
         6283 <p><strong><a class='existingWikiWord' href='/nlab/show/quantization'>Quantization</a></strong></p>
         6284 
         6285 <ul>
         6286 <li>
         6287 <p><a class='existingWikiWord' href='/nlab/show/geometric+quantization'>geometric quantization</a></p>
         6288 </li>
         6289 
         6290 <li>
         6291 <p><a class='existingWikiWord' href='/nlab/show/deformation+quantization'>deformation quantization</a></p>
         6292 </li>
         6293 
         6294 <li>
         6295 <p><a class='existingWikiWord' href='/nlab/show/path+integral'>path integral quantization</a></p>
         6296 </li>
         6297 
         6298 <li>
         6299 <p><a class='existingWikiWord' href='/nlab/show/semiclassical+approximation'>semiclassical approximation</a></p>
         6300 </li>
         6301 </ul>
         6302 </li>
         6303 
         6304 <li>
         6305 <p><strong><a class='existingWikiWord' href='/nlab/show/quantum+field+theory'>Quantum Field Theory</a></strong></p>
         6306 
         6307 <ul>
         6308 <li>
         6309 <p>Axiomatizations</p>
         6310 
         6311 <ul>
         6312 <li>
         6313 <p><a class='existingWikiWord' href='/nlab/show/AQFT'>algebraic QFT</a></p>
         6314 
         6315 <ul>
         6316 <li>
         6317 <p><a class='existingWikiWord' href='/nlab/show/Wightman+axioms'>Wightman axioms</a></p>
         6318 </li>
         6319 
         6320 <li>
         6321 <p><a class='existingWikiWord' href='/nlab/show/Haag-Kastler+axioms'>Haag-Kastler axioms</a></p>
         6322 
         6323 <ul>
         6324 <li>
         6325 <p><a class='existingWikiWord' href='/nlab/show/operator+algebra'>operator algebra</a></p>
         6326 </li>
         6327 
         6328 <li>
         6329 <p><a class='existingWikiWord' href='/nlab/show/causally+local+net+of+observables'>local net</a></p>
         6330 </li>
         6331 </ul>
         6332 </li>
         6333 
         6334 <li>
         6335 <p><a class='existingWikiWord' href='/nlab/show/conformal+net'>conformal net</a></p>
         6336 </li>
         6337 
         6338 <li>
         6339 <p><a class='existingWikiWord' href='/nlab/show/Reeh-Schlieder+theorem'>Reeh-Schlieder theorem</a></p>
         6340 </li>
         6341 
         6342 <li>
         6343 <p><a class='existingWikiWord' href='/nlab/show/Osterwalder-Schrader+theorem'>Osterwalder-Schrader theorem</a></p>
         6344 </li>
         6345 
         6346 <li>
         6347 <p><a class='existingWikiWord' href='/nlab/show/PCT+theorem'>PCT theorem</a></p>
         6348 </li>
         6349 
         6350 <li>
         6351 <p><a class='existingWikiWord' href='/nlab/show/Bisognano-Wichmann+theorem'>Bisognano-Wichmann theorem</a></p>
         6352 
         6353 <ul>
         6354 <li><a class='existingWikiWord' href='/nlab/show/modular+theory'>modular theory</a></li>
         6355 </ul>
         6356 </li>
         6357 
         6358 <li>
         6359 <p><a class='existingWikiWord' href='/nlab/show/spin-statistics+theorem'>spin-statistics theorem</a></p>
         6360 
         6361 <ul>
         6362 <li><a class='existingWikiWord' href='/nlab/show/boson'>boson</a>, <a class='existingWikiWord' href='/nlab/show/fermion'>fermion</a></li>
         6363 </ul>
         6364 </li>
         6365 </ul>
         6366 </li>
         6367 
         6368 <li>
         6369 <p><a class='existingWikiWord' href='/nlab/show/functorial+field+theory'>functorial QFT</a></p>
         6370 
         6371 <ul>
         6372 <li>
         6373 <p><a class='existingWikiWord' href='/nlab/show/cobordism'>cobordism</a></p>
         6374 </li>
         6375 
         6376 <li>
         6377 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-category+of+cobordisms'>(∞,n)-category of cobordisms</a></p>
         6378 </li>
         6379 
         6380 <li>
         6381 <p><a class='existingWikiWord' href='/nlab/show/cobordism+hypothesis'>cobordism hypothesis</a>-theorem</p>
         6382 </li>
         6383 
         6384 <li>
         6385 <p><a class='existingWikiWord' href='/nlab/show/extended+topological+quantum+field+theory'>extended topological quantum field theory</a></p>
         6386 </li>
         6387 </ul>
         6388 </li>
         6389 </ul>
         6390 </li>
         6391 
         6392 <li>
         6393 <p>Tools</p>
         6394 
         6395 <ul>
         6396 <li>
         6397 <p><a class='existingWikiWord' href='/nlab/show/perturbative+quantum+field+theory'>perturbative quantum field theory</a>, <a class='existingWikiWord' href='/nlab/show/vacuum'>vacuum</a></p>
         6398 </li>
         6399 
         6400 <li>
         6401 <p><a class='existingWikiWord' href='/nlab/show/effective+quantum+field+theory'>effective quantum field theory</a></p>
         6402 </li>
         6403 
         6404 <li>
         6405 <p><a class='existingWikiWord' href='/nlab/show/renormalization'>renormalization</a></p>
         6406 </li>
         6407 
         6408 <li>
         6409 <p><a class='existingWikiWord' href='/nlab/show/BV-BRST+formalism'>BV-BRST formalism</a></p>
         6410 </li>
         6411 
         6412 <li>
         6413 <p><a class='existingWikiWord' href='/nlab/show/geometric+infinity-function+theory'>geometric ∞-function theory</a></p>
         6414 </li>
         6415 </ul>
         6416 </li>
         6417 
         6418 <li>
         6419 <p><a class='existingWikiWord' href='/nlab/show/particle+physics'>particle physics</a></p>
         6420 
         6421 <ul>
         6422 <li>
         6423 <p><a class='existingWikiWord' href='/nlab/show/phenomenology'>phenomenology</a></p>
         6424 </li>
         6425 
         6426 <li>
         6427 <p><a class='existingWikiWord' href='/nlab/show/model+%28in+theoretical+physics%29'>models</a></p>
         6428 
         6429 <ul>
         6430 <li>
         6431 <p><a class='existingWikiWord' href='/nlab/show/standard+model+of+particle+physics'>standard model of particle physics</a></p>
         6432 </li>
         6433 
         6434 <li>
         6435 <p><a class='existingWikiWord' href='/nlab/show/fields+and+quanta+-+table'>fields and quanta</a></p>
         6436 </li>
         6437 
         6438 <li>
         6439 <p><a class='existingWikiWord' href='/nlab/show/GUT'>Grand Unified Theories</a>, <a class='existingWikiWord' href='/nlab/show/MSSM'>MSSM</a></p>
         6440 </li>
         6441 </ul>
         6442 </li>
         6443 
         6444 <li>
         6445 <p><a class='existingWikiWord' href='/nlab/show/scattering+amplitude'>scattering amplitude</a></p>
         6446 
         6447 <ul>
         6448 <li><a class='existingWikiWord' href='/nlab/show/on-shell+recursion'>on-shell recursion</a>, <a class='existingWikiWord' href='/nlab/show/KLT+relations'>KLT relations</a></li>
         6449 </ul>
         6450 </li>
         6451 </ul>
         6452 </li>
         6453 
         6454 <li>
         6455 <p>Structural phenomena</p>
         6456 
         6457 <ul>
         6458 <li>
         6459 <p><a class='existingWikiWord' href='/nlab/show/universality+class'>universality class</a></p>
         6460 </li>
         6461 
         6462 <li>
         6463 <p><a class='existingWikiWord' href='/nlab/show/quantum+anomaly'>quantum anomaly</a></p>
         6464 
         6465 <ul>
         6466 <li><a class='existingWikiWord' href='/nlab/show/Green-Schwarz+mechanism'>Green-Schwarz mechanism</a></li>
         6467 </ul>
         6468 </li>
         6469 
         6470 <li>
         6471 <p><a class='existingWikiWord' href='/nlab/show/instanton'>instanton</a></p>
         6472 </li>
         6473 
         6474 <li>
         6475 <p><a class='existingWikiWord' href='/nlab/show/spontaneously+broken+symmetry'>spontaneously broken symmetry</a></p>
         6476 </li>
         6477 
         6478 <li>
         6479 <p><a class='existingWikiWord' href='/nlab/show/Kaluza-Klein+mechanism'>Kaluza-Klein mechanism</a></p>
         6480 </li>
         6481 
         6482 <li>
         6483 <p><a class='existingWikiWord' href='/nlab/show/integrable+system'>integrable systems</a></p>
         6484 </li>
         6485 
         6486 <li>
         6487 <p><a class='existingWikiWord' href='/nlab/show/holonomic+quantum+field'>holonomic quantum fields</a></p>
         6488 </li>
         6489 </ul>
         6490 </li>
         6491 
         6492 <li>
         6493 <p>Types of quantum field thories</p>
         6494 
         6495 <ul>
         6496 <li>
         6497 <p><a class='existingWikiWord' href='/nlab/show/topological+quantum+field+theory'>TQFT</a></p>
         6498 
         6499 <ul>
         6500 <li>
         6501 <p><a class='existingWikiWord' href='/nlab/show/2d+TQFT'>2d TQFT</a></p>
         6502 </li>
         6503 
         6504 <li>
         6505 <p><a class='existingWikiWord' href='/nlab/show/Dijkgraaf-Witten+theory'>Dijkgraaf-Witten theory</a></p>
         6506 </li>
         6507 
         6508 <li>
         6509 <p><a class='existingWikiWord' href='/nlab/show/Chern-Simons+theory'>Chern-Simons theory</a></p>
         6510 </li>
         6511 </ul>
         6512 </li>
         6513 
         6514 <li>
         6515 <p><a class='existingWikiWord' href='/nlab/show/TCFT'>TCFT</a></p>
         6516 
         6517 <ul>
         6518 <li>
         6519 <p><a class='existingWikiWord' href='/nlab/show/A-model'>A-model</a>, <a class='existingWikiWord' href='/nlab/show/B-model'>B-model</a></p>
         6520 </li>
         6521 
         6522 <li>
         6523 <p><a class='existingWikiWord' href='/nlab/show/mirror+symmetry'>homological mirror symmetry</a></p>
         6524 </li>
         6525 </ul>
         6526 </li>
         6527 
         6528 <li>
         6529 <p><a class='existingWikiWord' href='/nlab/show/QFT+with+defects'>QFT with defects</a></p>
         6530 </li>
         6531 
         6532 <li>
         6533 <p><a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal field theory</a></p>
         6534 </li>
         6535 
         6536 <li>
         6537 <p><a class='existingWikiWord' href='/nlab/show/%281%2C1%29-dimensional+Euclidean+field+theories+and+K-theory'>(1,1)-dimensional Euclidean field theories and K-theory</a></p>
         6538 </li>
         6539 
         6540 <li>
         6541 <p><a class='existingWikiWord' href='/nlab/show/%282%2C1%29-dimensional+Euclidean+field+theory'>(2,1)-dimensional Euclidean field theory and elliptic cohomology</a></p>
         6542 </li>
         6543 
         6544 <li>
         6545 <p><a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>CFT</a></p>
         6546 
         6547 <ul>
         6548 <li>
         6549 <p><a class='existingWikiWord' href='/nlab/show/Wess-Zumino-Witten+model'>WZW model</a></p>
         6550 </li>
         6551 
         6552 <li>
         6553 <p><a class='existingWikiWord' href='/nlab/show/D%3D6+N%3D%282%2C0%29+SCFT'>6d (2,0)-supersymmetric QFT</a></p>
         6554 </li>
         6555 </ul>
         6556 </li>
         6557 
         6558 <li>
         6559 <p><a class='existingWikiWord' href='/nlab/show/gauge+theory'>gauge theory</a></p>
         6560 
         6561 <ul>
         6562 <li>
         6563 <p><a class='existingWikiWord' href='/nlab/show/field+strength'>field strength</a></p>
         6564 </li>
         6565 
         6566 <li>
         6567 <p><a class='existingWikiWord' href='/nlab/show/gauge+group'>gauge group</a>, <a class='existingWikiWord' href='/nlab/show/gauge+transformation'>gauge transformation</a>, <a class='existingWikiWord' href='/nlab/show/gauge+fixing'>gauge fixing</a></p>
         6568 </li>
         6569 
         6570 <li>
         6571 <p>examples</p>
         6572 
         6573 <ul>
         6574 <li><a class='existingWikiWord' href='/nlab/show/electromagnetic+field'>electromagnetic field</a>, <a class='existingWikiWord' href='/nlab/show/quantum+electrodynamics'>QED</a></li>
         6575 </ul>
         6576 </li>
         6577 
         6578 <li>
         6579 <p><a class='existingWikiWord' href='/nlab/show/electric+charge'>electric charge</a></p>
         6580 </li>
         6581 
         6582 <li>
         6583 <p><a class='existingWikiWord' href='/nlab/show/magnetic+charge'>magnetic charge</a></p>
         6584 
         6585 <ul>
         6586 <li><a class='existingWikiWord' href='/nlab/show/Yang-Mills+field'>Yang-Mills field</a>, <a class='existingWikiWord' href='/nlab/show/QCD'>QCD</a></li>
         6587 </ul>
         6588 </li>
         6589 
         6590 <li>
         6591 <p><a class='existingWikiWord' href='/nlab/show/Yang-Mills+theory'>Yang-Mills theory</a></p>
         6592 </li>
         6593 
         6594 <li>
         6595 <p><a class='existingWikiWord' href='/nlab/show/The+Dirac+Electron'>spinors in Yang-Mills theory</a></p>
         6596 </li>
         6597 
         6598 <li>
         6599 <p><a class='existingWikiWord' href='/nlab/show/topological+Yang-Mills+theory'>topological Yang-Mills theory</a></p>
         6600 
         6601 <ul>
         6602 <li><a class='existingWikiWord' href='/nlab/show/Kalb-Ramond+field'>Kalb-Ramond field</a></li>
         6603 
         6604 <li><a class='existingWikiWord' href='/nlab/show/supergravity+C-field'>supergravity C-field</a></li>
         6605 
         6606 <li><a class='existingWikiWord' href='/nlab/show/RR+field'>RR field</a></li>
         6607 
         6608 <li><a class='existingWikiWord' href='/nlab/show/first-order+formulation+of+gravity'>first-order formulation of gravity</a></li>
         6609 </ul>
         6610 </li>
         6611 
         6612 <li>
         6613 <p><a class='existingWikiWord' href='/nlab/show/general+covariance'>general covariance</a></p>
         6614 </li>
         6615 
         6616 <li>
         6617 <p><a class='existingWikiWord' href='/nlab/show/supergravity'>supergravity</a></p>
         6618 </li>
         6619 
         6620 <li>
         6621 <p><a class='existingWikiWord' href='/nlab/show/D%27Auria-Fre+formulation+of+supergravity'>D&#39;Auria-Fre formulation of supergravity</a></p>
         6622 </li>
         6623 
         6624 <li>
         6625 <p><a class='existingWikiWord' href='/nlab/show/gravity+as+a+BF+theory'>gravity as a BF-theory</a></p>
         6626 </li>
         6627 </ul>
         6628 </li>
         6629 
         6630 <li>
         6631 <p><a class='existingWikiWord' href='/nlab/show/sigma-model'>sigma-model</a></p>
         6632 
         6633 <ul>
         6634 <li>
         6635 <p><a class='existingWikiWord' href='/nlab/show/particle'>particle</a>, <a class='existingWikiWord' href='/nlab/show/relativistic+particle'>relativistic particle</a>, <a class='existingWikiWord' href='/nlab/show/fundamental+particle'>fundamental particle</a>, <a class='existingWikiWord' href='/nlab/show/spinning+particle'>spinning particle</a>, <a class='existingWikiWord' href='/nlab/show/superparticle'>superparticle</a></p>
         6636 </li>
         6637 
         6638 <li>
         6639 <p><a class='existingWikiWord' href='/nlab/show/string'>string</a>, <a class='existingWikiWord' href='/nlab/show/spinning+string'>spinning string</a>, <a class='existingWikiWord' href='/nlab/show/superstring'>superstring</a></p>
         6640 </li>
         6641 
         6642 <li>
         6643 <p><a class='existingWikiWord' href='/nlab/show/membrane'>membrane</a></p>
         6644 </li>
         6645 
         6646 <li>
         6647 <p><a class='existingWikiWord' href='/nlab/show/AKSZ+sigma-model'>AKSZ theory</a></p>
         6648 </li>
         6649 </ul>
         6650 </li>
         6651 </ul>
         6652 </li>
         6653 </ul>
         6654 </li>
         6655 
         6656 <li>
         6657 <p><a class='existingWikiWord' href='/nlab/show/string+theory'>String Theory</a></p>
         6658 
         6659 <ul>
         6660 <li><a class='existingWikiWord' href='/nlab/show/string+theory+results+applied+elsewhere'>string theory results applied elsewhere</a></li>
         6661 </ul>
         6662 </li>
         6663 
         6664 <li>
         6665 <p><a class='existingWikiWord' href='/nlab/show/number+theory+and+physics'>number theory and physics</a></p>
         6666 
         6667 <ul>
         6668 <li><a class='existingWikiWord' href='/nlab/show/Riemann+hypothesis+and+physics'>Riemann hypothesis and physics</a></li>
         6669 </ul>
         6670 </li>
         6671 </ul>
         6672 <div>
         6673 <p>
         6674   <a href='/nlab/edit/physicscontents'>Edit this sidebar</a>
         6675 </p>
         6676 </div></div>
         6677 </div>
         6678 </div>
         6679 
         6680 <h1 id='contents'>Contents</h1>
         6681 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#references'>References</a></li></ul></div>
         6682 <h2 id='idea'>Idea</h2>
         6683 
         6684 <p>Our <a class='existingWikiWord' href='/nlab/show/galaxy'>galaxy</a>.</p>
         6685 
         6686 <h2 id='references'>References</h2>
         6687 
         6688 <ul>
         6689 <li>Susan Gardner, Samuel D. McDermott, Brian Yanny, <em>The Milky Way, Coming into Focus: Precision Astrometry Probes its Evolution, and its Dark Matter</em> (<a href='https://arxiv.org/abs/2106.13284'>arXiv:2106.13284</a>)</li>
         6690 </ul>
         6691 
         6692 <p>See also</p>
         6693 
         6694 <ul>
         6695 <li>Wikipedia, <em><a href='https://en.wikipedia.org/wiki/Milky_Way'>Milky Way</a></em></li>
         6696 </ul>      </div>
         6697     </content>
         6698   </entry>
         6699 </feed>