adps.org.rdf.xml - sfeed_tests - sfeed tests and RSS and Atom files
(HTM) git clone git://git.codemadness.org/sfeed_tests
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) README
(DIR) LICENSE
---
adps.org.rdf.xml (247962B)
---
1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:syn="http://purl.org/rss/1.0/modules/syndication/" xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns="http://purl.org/rss/1.0/">
3 <channel rdf:about="http://journals.aps.org/prl/">
4 <title>PRL: Gravitation and Astrophysics</title>
5 <link>http://journals.aps.org/prl/</link>
6 <description>Recently published articles in Phys. Rev. Lett. in the Table of Content section "Gravitation and Astrophysics"</description>
7 <syn:updatePeriod>hourly</syn:updatePeriod>
8 <syn:updateFrequency>1</syn:updateFrequency>
9 <syn:updateBase>2023-02-26T13:16:49+00:00</syn:updateBase>
10 <dc:creator>rss@aps.org</dc:creator>
11 <dc:publisher>assocpub@aps.org</dc:publisher>
12 <dc:date>2023-02-26T13:16:49+00:00</dc:date>
13 <dc:language>en</dc:language>
14 <dc:rights>Copyright © 2023 the American Physical Society. Personal use only, all commercial or other reuse prohibited</dc:rights>
15 <prism:copyright>Copyright © 2023 the American Physical Society</prism:copyright>
16 <prism:rightsAgent>assocpub@aps.org</prism:rightsAgent>
17 <items>
18 <rdf:Seq>
19 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.081501"/>
20 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.081401"/>
21 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.081402"/>
22 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.081403"/>
23 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.071002"/>
24 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.071001"/>
25 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.061002"/>
26 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.061001"/>
27 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.061401"/>
28 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.051201"/>
29 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.051001"/>
30 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.041001"/>
31 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.021401"/>
32 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.021001"/>
33 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.011402"/>
34 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.130.011401"/>
35 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261104"/>
36 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261303"/>
37 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261301"/>
38 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261302"/>
39 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261102"/>
40 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261103"/>
41 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.261101"/>
42 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.251103"/>
43 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.251104"/>
44 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.251101"/>
45 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.251102"/>
46 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.241102"/>
47 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.241103"/>
48 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.241301"/>
49 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.241101"/>
50 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.231101"/>
51 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.231301"/>
52 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.221301"/>
53 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.211102"/>
54 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.211101"/>
55 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.201301"/>
56 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.191301"/>
57 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.191302"/>
58 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.191103"/>
59 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.191101"/>
60 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.191102"/>
61 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.181301"/>
62 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.181101"/>
63 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.161101"/>
64 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.151101"/>
65 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.151102"/>
66 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.151103"/>
67 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.141103"/>
68 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.141102"/>
69 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.141101"/>
70 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.131302"/>
71 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.131301"/>
72 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.121103"/>
73 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.121104"/>
74 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.121101"/>
75 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.121102"/>
76 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111102"/>
77 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111103"/>
78 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111303"/>
79 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111101"/>
80 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111301"/>
81 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.111302"/>
82 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.101102"/>
83 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.101101"/>
84 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.091301"/>
85 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.081102"/>
86 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.071102"/>
87 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.071101"/>
88 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061103"/>
89 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061104"/>
90 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061102"/>
91 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061302"/>
92 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061101"/>
93 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.061301"/>
94 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.041101"/>
95 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.031302"/>
96 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.031102"/>
97 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.031103"/>
98 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.031101"/>
99 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.031301"/>
100 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.021301"/>
101 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.021302"/>
102 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.129.011101"/>
103 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.251101"/>
104 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.231101"/>
105 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.231102"/>
106 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.231301"/>
107 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221101"/>
108 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221103"/>
109 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221104"/>
110 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221102"/>
111 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221301"/>
112 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.221302"/>
113 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.211102"/>
114 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.211101"/>
115 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.201302"/>
116 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.201301"/>
117 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.201101"/>
118 <rdf:li rdf:resource="http://link.aps.org/doi/10.1103/PhysRevLett.128.191102"/>
119 </rdf:Seq>
120 </items>
121 </channel>
122 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.081501">
123 <title>Lorentzian Quantum Gravity and the Graviton Spectral Function</title>
124 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.081501</link>
125 <description>Author(s): Jannik Fehre, Daniel F. Litim, Jan M. Pawlowski, and Manuel Reichert<br/><p>We present the first direct and nonperturbative computation of the graviton spectral function in quantum gravity. This is achieved with the help of a novel Lorentzian renormalization group approach, combined with a spectral representation of correlation functions. We find a positive graviton spectra…</p><br/>[Phys. Rev. Lett. 130, 081501] Published Fri Feb 24, 2023</description>
126 <content:encoded><![CDATA[<p>Author(s): Jannik Fehre, Daniel F. Litim, Jan M. Pawlowski, and Manuel Reichert</p><p>We present the first direct and nonperturbative computation of the graviton spectral function in quantum gravity. This is achieved with the help of a novel Lorentzian renormalization group approach, combined with a spectral representation of correlation functions. We find a positive graviton spectra…</p><br/><p>[Phys. Rev. Lett. 130, 081501] Published Fri Feb 24, 2023</p>]]></content:encoded>
127 <dc:title>Lorentzian Quantum Gravity and the Graviton Spectral Function</dc:title>
128 <dc:creator>Jannik Fehre, Daniel F. Litim, Jan M. Pawlowski, and Manuel Reichert</dc:creator>
129 <dc:date>2023-02-24T10:00:00+00:00</dc:date>
130 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
131 <dc:source>Phys. Rev. Lett. 130, 081501 (2023)</dc:source>
132 <dc:type>article</dc:type>
133 <dc:identifier>doi:10.1103/PhysRevLett.130.081501</dc:identifier>
134 <prism:doi>10.1103/PhysRevLett.130.081501</prism:doi>
135 <prism:publicationName>Physical Review Letters</prism:publicationName>
136 <prism:volume>130</prism:volume>
137 <prism:number>8</prism:number>
138 <prism:publicationDate>2023-02-24T10:00:00+00:00</prism:publicationDate>
139 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.081501</prism:url>
140 <prism:startingPage>081501</prism:startingPage>
141 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
142 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
143 </item>
144 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.081401">
145 <title>Nonlinear Effects in Black Hole Ringdown</title>
146 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.081401</link>
147 <description>Author(s): Mark Ho-Yeuk Cheung, Vishal Baibhav, Emanuele Berti, Vitor Cardoso, Gregorio Carullo, Roberto Cotesta, Walter Del Pozzo, Francisco Duque, Thomas Helfer, Estuti Shukla, and Kaze W. K. Wong<br/><p>Simulations show that nonlinear spacetime dynamics manifest in the postmerger gravitational-wave signal of binary black hole coalescence.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.081401.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 130, 081401] Published Wed Feb 22, 2023</description>
148 <content:encoded><![CDATA[<p>Author(s): Mark Ho-Yeuk Cheung, Vishal Baibhav, Emanuele Berti, Vitor Cardoso, Gregorio Carullo, Roberto Cotesta, Walter Del Pozzo, Francisco Duque, Thomas Helfer, Estuti Shukla, and Kaze W. K. Wong</p><p>Simulations show that nonlinear spacetime dynamics manifest in the postmerger gravitational-wave signal of binary black hole coalescence.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.081401.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 130, 081401] Published Wed Feb 22, 2023</p>]]></content:encoded>
149 <dc:title>Nonlinear Effects in Black Hole Ringdown</dc:title>
150 <dc:creator>Mark Ho-Yeuk Cheung, Vishal Baibhav, Emanuele Berti, Vitor Cardoso, Gregorio Carullo, Roberto Cotesta, Walter Del Pozzo, Francisco Duque, Thomas Helfer, Estuti Shukla, and Kaze W. K. Wong</dc:creator>
151 <dc:date>2023-02-22T10:00:00+00:00</dc:date>
152 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
153 <dc:source>Phys. Rev. Lett. 130, 081401 (2023)</dc:source>
154 <dc:type>article</dc:type>
155 <dc:identifier>doi:10.1103/PhysRevLett.130.081401</dc:identifier>
156 <prism:doi>10.1103/PhysRevLett.130.081401</prism:doi>
157 <prism:publicationName>Physical Review Letters</prism:publicationName>
158 <prism:volume>130</prism:volume>
159 <prism:number>8</prism:number>
160 <prism:publicationDate>2023-02-22T10:00:00+00:00</prism:publicationDate>
161 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.081401</prism:url>
162 <prism:startingPage>081401</prism:startingPage>
163 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
164 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
165 </item>
166 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.081402">
167 <title>Nonlinearities in Black Hole Ringdowns</title>
168 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.081402</link>
169 <description>Author(s): Keefe Mitman, Macarena Lagos, Leo C. Stein, Sizheng Ma, Lam Hui, Yanbei Chen, Nils Deppe, François Hébert, Lawrence E. Kidder, Jordan Moxon, Mark A. Scheel, Saul A. Teukolsky, William Throwe, and Nils L. Vu<br/><p>Simulations show that nonlinear spacetime dynamics manifest in the postmerger gravitational-wave signal of binary black hole coalescence.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.081402.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 130, 081402] Published Wed Feb 22, 2023</description>
170 <content:encoded><![CDATA[<p>Author(s): Keefe Mitman, Macarena Lagos, Leo C. Stein, Sizheng Ma, Lam Hui, Yanbei Chen, Nils Deppe, François Hébert, Lawrence E. Kidder, Jordan Moxon, Mark A. Scheel, Saul A. Teukolsky, William Throwe, and Nils L. Vu</p><p>Simulations show that nonlinear spacetime dynamics manifest in the postmerger gravitational-wave signal of binary black hole coalescence.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.081402.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 130, 081402] Published Wed Feb 22, 2023</p>]]></content:encoded>
171 <dc:title>Nonlinearities in Black Hole Ringdowns</dc:title>
172 <dc:creator>Keefe Mitman, Macarena Lagos, Leo C. Stein, Sizheng Ma, Lam Hui, Yanbei Chen, Nils Deppe, François Hébert, Lawrence E. Kidder, Jordan Moxon, Mark A. Scheel, Saul A. Teukolsky, William Throwe, and Nils L. Vu</dc:creator>
173 <dc:date>2023-02-22T10:00:00+00:00</dc:date>
174 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
175 <dc:source>Phys. Rev. Lett. 130, 081402 (2023)</dc:source>
176 <dc:type>article</dc:type>
177 <dc:identifier>doi:10.1103/PhysRevLett.130.081402</dc:identifier>
178 <prism:doi>10.1103/PhysRevLett.130.081402</prism:doi>
179 <prism:publicationName>Physical Review Letters</prism:publicationName>
180 <prism:volume>130</prism:volume>
181 <prism:number>8</prism:number>
182 <prism:publicationDate>2023-02-22T10:00:00+00:00</prism:publicationDate>
183 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.081402</prism:url>
184 <prism:startingPage>081402</prism:startingPage>
185 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
186 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
187 </item>
188 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.081403">
189 <title>Silicon Oxy-Nitride for the Low Refractive Index Layers in the Mirror Coatings of the Cryogenic Laser Interferometer Gravitational Waves Detector</title>
190 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.081403</link>
191 <description>Author(s): Shiuh Chao, Wen-Jie Tsai, Dong-Lin Tsai, I-Peng Chang, Qian-Yi Hong, Wei-Chih Chang, and Yu-Hsun Kao<br/><p>The low refractive index layers in the mirror coatings of the room-temperature laser interferometer gravitational waves detectors are silica deposited by the ion beam sputter method. However, the silica film suffers from the cryogenic mechanical loss peak, hindering its application for the next gene…</p><br/>[Phys. Rev. Lett. 130, 081403] Published Wed Feb 22, 2023</description>
192 <content:encoded><![CDATA[<p>Author(s): Shiuh Chao, Wen-Jie Tsai, Dong-Lin Tsai, I-Peng Chang, Qian-Yi Hong, Wei-Chih Chang, and Yu-Hsun Kao</p><p>The low refractive index layers in the mirror coatings of the room-temperature laser interferometer gravitational waves detectors are silica deposited by the ion beam sputter method. However, the silica film suffers from the cryogenic mechanical loss peak, hindering its application for the next gene…</p><br/><p>[Phys. Rev. Lett. 130, 081403] Published Wed Feb 22, 2023</p>]]></content:encoded>
193 <dc:title>Silicon Oxy-Nitride for the Low Refractive Index Layers in the Mirror Coatings of the Cryogenic Laser Interferometer Gravitational Waves Detector</dc:title>
194 <dc:creator>Shiuh Chao, Wen-Jie Tsai, Dong-Lin Tsai, I-Peng Chang, Qian-Yi Hong, Wei-Chih Chang, and Yu-Hsun Kao</dc:creator>
195 <dc:date>2023-02-22T10:00:00+00:00</dc:date>
196 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
197 <dc:source>Phys. Rev. Lett. 130, 081403 (2023)</dc:source>
198 <dc:type>article</dc:type>
199 <dc:identifier>doi:10.1103/PhysRevLett.130.081403</dc:identifier>
200 <prism:doi>10.1103/PhysRevLett.130.081403</prism:doi>
201 <prism:publicationName>Physical Review Letters</prism:publicationName>
202 <prism:volume>130</prism:volume>
203 <prism:number>8</prism:number>
204 <prism:publicationDate>2023-02-22T10:00:00+00:00</prism:publicationDate>
205 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.081403</prism:url>
206 <prism:startingPage>081403</prism:startingPage>
207 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
208 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
209 </item>
210 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.071002">
211 <title>Axion Dark Matter Search around $4.55\text{ }\text{ }\mathrm{μ}\mathrm{eV}$ with Dine-Fischler-Srednicki-Zhitnitskii Sensitivity</title>
212 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.071002</link>
213 <description>Author(s): Andrew K. Yi <em>et al.</em><br/><p>We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded the axion-photon coupling ${g}_{aγγ}$ down to about $6.2×{10}^{−16}\text{ }\text{ }{\mathrm{GeV…</p><br/>[Phys. Rev. Lett. 130, 071002] Published Thu Feb 16, 2023</description>
214 <content:encoded><![CDATA[<p>Author(s): Andrew K. Yi <em>et al.</em></p><p>We report an axion dark matter search at Dine-Fischler-Srednicki-Zhitnitskii sensitivity with the CAPP-12TB haloscope, assuming axions contribute 100% of the local dark matter density. The search excluded the axion-photon coupling <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><msub><mi>g</mi><mrow><mi>a</mi><mi>γ</mi><mi>γ</mi></mrow></msub></math> down to about <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mn>6.2</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup><mtext> </mtext><mtext> </mtext><mrow><msup><mrow><mi>GeV</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> over the axion mass range between…</p><br/><p>[Phys. Rev. Lett. 130, 071002] Published Thu Feb 16, 2023</p>]]></content:encoded>
215 <dc:title>Axion Dark Matter Search around $4.55\text{ }\text{ }\mathrm{μ}\mathrm{eV}$ with Dine-Fischler-Srednicki-Zhitnitskii Sensitivity</dc:title>
216 <dc:creator>Andrew K. Yi <em>et al.</em></dc:creator>
217 <dc:date>2023-02-16T10:00:00+00:00</dc:date>
218 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
219 <dc:source>Phys. Rev. Lett. 130, 071002 (2023)</dc:source>
220 <dc:type>article</dc:type>
221 <dc:identifier>doi:10.1103/PhysRevLett.130.071002</dc:identifier>
222 <prism:doi>10.1103/PhysRevLett.130.071002</prism:doi>
223 <prism:publicationName>Physical Review Letters</prism:publicationName>
224 <prism:volume>130</prism:volume>
225 <prism:number>7</prism:number>
226 <prism:publicationDate>2023-02-16T10:00:00+00:00</prism:publicationDate>
227 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.071002</prism:url>
228 <prism:startingPage>071002</prism:startingPage>
229 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
230 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
231 </item>
232 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.071001">
233 <title>Magnetic Dynamo Caused by Axions in Neutron Stars</title>
234 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.071001</link>
235 <description>Author(s): Filippo Anzuini, José A. Pons, Antonio Gómez-Bañón, Paul D. Lasky, Federico Bianchini, and Andrew Melatos<br/><p>The coupling between axions and photons modifies Maxwell’s equations, introducing a dynamo term in the magnetic induction equation. In neutron stars, for critical values of the axion decay constant and axion mass, the magnetic dynamo mechanism increases the total magnetic energy of the star. We show…</p><br/>[Phys. Rev. Lett. 130, 071001] Published Wed Feb 15, 2023</description>
236 <content:encoded><![CDATA[<p>Author(s): Filippo Anzuini, José A. Pons, Antonio Gómez-Bañón, Paul D. Lasky, Federico Bianchini, and Andrew Melatos</p><p>The coupling between axions and photons modifies Maxwell’s equations, introducing a dynamo term in the magnetic induction equation. In neutron stars, for critical values of the axion decay constant and axion mass, the magnetic dynamo mechanism increases the total magnetic energy of the star. We show…</p><br/><p>[Phys. Rev. Lett. 130, 071001] Published Wed Feb 15, 2023</p>]]></content:encoded>
237 <dc:title>Magnetic Dynamo Caused by Axions in Neutron Stars</dc:title>
238 <dc:creator>Filippo Anzuini, José A. Pons, Antonio Gómez-Bañón, Paul D. Lasky, Federico Bianchini, and Andrew Melatos</dc:creator>
239 <dc:date>2023-02-15T10:00:00+00:00</dc:date>
240 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
241 <dc:source>Phys. Rev. Lett. 130, 071001 (2023)</dc:source>
242 <dc:type>article</dc:type>
243 <dc:identifier>doi:10.1103/PhysRevLett.130.071001</dc:identifier>
244 <prism:doi>10.1103/PhysRevLett.130.071001</prism:doi>
245 <prism:publicationName>Physical Review Letters</prism:publicationName>
246 <prism:volume>130</prism:volume>
247 <prism:number>7</prism:number>
248 <prism:publicationDate>2023-02-15T10:00:00+00:00</prism:publicationDate>
249 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.071001</prism:url>
250 <prism:startingPage>071001</prism:startingPage>
251 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
252 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
253 </item>
254 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.061002">
255 <title>Search for Gamma-Ray Spectral Lines from Dark Matter Annihilation up to 100 TeV toward the Galactic Center with MAGIC</title>
256 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.061002</link>
257 <description>Author(s): H. Abe <em>et al.</em> (MAGIC Collaboration)<br/><p>Linelike features in TeV $γ$ rays constitute a “smoking gun” for TeV-scale particle dark matter and new physics. Probing the Galactic Center region with ground-based Cherenkov telescopes enables the search for TeV spectral features in immediate association with a dense dark matter reservoir at a sen…</p><br/>[Phys. Rev. Lett. 130, 061002] Published Fri Feb 10, 2023</description>
258 <content:encoded><![CDATA[<p>Author(s): H. Abe <em>et al.</em> (MAGIC Collaboration)</p><p>Linelike features in TeV <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>γ</mi></math> rays constitute a “smoking gun” for TeV-scale particle dark matter and new physics. Probing the Galactic Center region with ground-based Cherenkov telescopes enables the search for TeV spectral features in immediate association with a dense dark matter reservoir at a sensi…</p><br/><p>[Phys. Rev. Lett. 130, 061002] Published Fri Feb 10, 2023</p>]]></content:encoded>
259 <dc:title>Search for Gamma-Ray Spectral Lines from Dark Matter Annihilation up to 100 TeV toward the Galactic Center with MAGIC</dc:title>
260 <dc:creator>H. Abe <em>et al.</em> (MAGIC Collaboration)</dc:creator>
261 <dc:date>2023-02-10T10:00:00+00:00</dc:date>
262 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
263 <dc:source>Phys. Rev. Lett. 130, 061002 (2023)</dc:source>
264 <dc:type>article</dc:type>
265 <dc:identifier>doi:10.1103/PhysRevLett.130.061002</dc:identifier>
266 <prism:doi>10.1103/PhysRevLett.130.061002</prism:doi>
267 <prism:publicationName>Physical Review Letters</prism:publicationName>
268 <prism:volume>130</prism:volume>
269 <prism:number>6</prism:number>
270 <prism:publicationDate>2023-02-10T10:00:00+00:00</prism:publicationDate>
271 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.061002</prism:url>
272 <prism:startingPage>061002</prism:startingPage>
273 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
274 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
275 </item>
276 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.061001">
277 <title>Limits to Gauge Coupling in the Dark Sector Set by the Nonobservation of Instanton-Induced Decay of Super-Heavy Dark Matter in the Pierre Auger Observatory Data</title>
278 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.061001</link>
279 <description>Author(s): P. Abreu <em>et al.</em> (Pierre Auger Collaboration)<br/><p>Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for sign…</p><br/>[Phys. Rev. Lett. 130, 061001] Published Tue Feb 07, 2023</description>
280 <content:encoded><![CDATA[<p>Author(s): P. Abreu <em>et al.</em> (Pierre Auger Collaboration)</p><p>Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for sign…</p><br/><p>[Phys. Rev. Lett. 130, 061001] Published Tue Feb 07, 2023</p>]]></content:encoded>
281 <dc:title>Limits to Gauge Coupling in the Dark Sector Set by the Nonobservation of Instanton-Induced Decay of Super-Heavy Dark Matter in the Pierre Auger Observatory Data</dc:title>
282 <dc:creator>P. Abreu <em>et al.</em> (Pierre Auger Collaboration)</dc:creator>
283 <dc:date>2023-02-07T10:00:00+00:00</dc:date>
284 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
285 <dc:source>Phys. Rev. Lett. 130, 061001 (2023)</dc:source>
286 <dc:type>article</dc:type>
287 <dc:identifier>doi:10.1103/PhysRevLett.130.061001</dc:identifier>
288 <prism:doi>10.1103/PhysRevLett.130.061001</prism:doi>
289 <prism:publicationName>Physical Review Letters</prism:publicationName>
290 <prism:volume>130</prism:volume>
291 <prism:number>6</prism:number>
292 <prism:publicationDate>2023-02-07T10:00:00+00:00</prism:publicationDate>
293 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.061001</prism:url>
294 <prism:startingPage>061001</prism:startingPage>
295 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
296 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
297 </item>
298 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.061401">
299 <title>Exotic Compact Objects and the Fate of the Light-Ring Instability</title>
300 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.061401</link>
301 <description>Author(s): Pedro V. P. Cunha, Carlos Herdeiro, Eugen Radu, and Nicolas Sanchis-Gual<br/><p>The results of new simulations negate the argument that some objects thought to be black holes are instead hypothetical exotic systems called bosonic stars.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.061401.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 130, 061401] Published Tue Feb 07, 2023</description>
302 <content:encoded><![CDATA[<p>Author(s): Pedro V. P. Cunha, Carlos Herdeiro, Eugen Radu, and Nicolas Sanchis-Gual</p><p>The results of new simulations negate the argument that some objects thought to be black holes are instead hypothetical exotic systems called bosonic stars.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.130.061401.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 130, 061401] Published Tue Feb 07, 2023</p>]]></content:encoded>
303 <dc:title>Exotic Compact Objects and the Fate of the Light-Ring Instability</dc:title>
304 <dc:creator>Pedro V. P. Cunha, Carlos Herdeiro, Eugen Radu, and Nicolas Sanchis-Gual</dc:creator>
305 <dc:date>2023-02-07T10:00:00+00:00</dc:date>
306 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
307 <dc:source>Phys. Rev. Lett. 130, 061401 (2023)</dc:source>
308 <dc:type>article</dc:type>
309 <dc:identifier>doi:10.1103/PhysRevLett.130.061401</dc:identifier>
310 <prism:doi>10.1103/PhysRevLett.130.061401</prism:doi>
311 <prism:publicationName>Physical Review Letters</prism:publicationName>
312 <prism:volume>130</prism:volume>
313 <prism:number>6</prism:number>
314 <prism:publicationDate>2023-02-07T10:00:00+00:00</prism:publicationDate>
315 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.061401</prism:url>
316 <prism:startingPage>061401</prism:startingPage>
317 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
318 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
319 </item>
320 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.051201">
321 <title>Particle Motion under the Conservative Piece of the Self-Force is Hamiltonian</title>
322 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.051201</link>
323 <description>Author(s): Francisco M. Blanco and Éanna É. Flanagan<br/><p>We consider the motion of a point particle in a stationary spacetime under the influence of a scalar, electromagnetic, or gravitational self-force. We show that the conservative piece of the first-order self-force gives rise to Hamiltonian dynamics, and we derive an explicit expression for the Hamil…</p><br/>[Phys. Rev. Lett. 130, 051201] Published Wed Feb 01, 2023</description>
324 <content:encoded><![CDATA[<p>Author(s): Francisco M. Blanco and Éanna É. Flanagan</p><p>We consider the motion of a point particle in a stationary spacetime under the influence of a scalar, electromagnetic, or gravitational self-force. We show that the conservative piece of the first-order self-force gives rise to Hamiltonian dynamics, and we derive an explicit expression for the Hamil…</p><br/><p>[Phys. Rev. Lett. 130, 051201] Published Wed Feb 01, 2023</p>]]></content:encoded>
325 <dc:title>Particle Motion under the Conservative Piece of the Self-Force is Hamiltonian</dc:title>
326 <dc:creator>Francisco M. Blanco and Éanna É. Flanagan</dc:creator>
327 <dc:date>2023-02-01T10:00:00+00:00</dc:date>
328 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
329 <dc:source>Phys. Rev. Lett. 130, 051201 (2023)</dc:source>
330 <dc:type>article</dc:type>
331 <dc:identifier>doi:10.1103/PhysRevLett.130.051201</dc:identifier>
332 <prism:doi>10.1103/PhysRevLett.130.051201</prism:doi>
333 <prism:publicationName>Physical Review Letters</prism:publicationName>
334 <prism:volume>130</prism:volume>
335 <prism:number>5</prism:number>
336 <prism:publicationDate>2023-02-01T10:00:00+00:00</prism:publicationDate>
337 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.051201</prism:url>
338 <prism:startingPage>051201</prism:startingPage>
339 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
340 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
341 </item>
342 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.051001">
343 <title>Constraining First-Order Phase Transitions with Curvature Perturbations</title>
344 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.051001</link>
345 <description>Author(s): Jing Liu, Ligong Bian, Rong-Gen Cai, Zong-Kuan Guo, and Shao-Jiang Wang<br/><p>The randomness of the quantum tunneling process induces superhorizon curvature perturbations during cosmological first-order phase transitions. We for the first time utilize curvature perturbations to constrain the phase transition parameters, and find that the observations of the cosmic microwave b…</p><br/>[Phys. Rev. Lett. 130, 051001] Published Tue Jan 31, 2023</description>
346 <content:encoded><![CDATA[<p>Author(s): Jing Liu, Ligong Bian, Rong-Gen Cai, Zong-Kuan Guo, and Shao-Jiang Wang</p><p>The randomness of the quantum tunneling process induces superhorizon curvature perturbations during cosmological first-order phase transitions. We for the first time utilize curvature perturbations to constrain the phase transition parameters, and find that the observations of the cosmic microwave b…</p><br/><p>[Phys. Rev. Lett. 130, 051001] Published Tue Jan 31, 2023</p>]]></content:encoded>
347 <dc:title>Constraining First-Order Phase Transitions with Curvature Perturbations</dc:title>
348 <dc:creator>Jing Liu, Ligong Bian, Rong-Gen Cai, Zong-Kuan Guo, and Shao-Jiang Wang</dc:creator>
349 <dc:date>2023-01-31T10:00:00+00:00</dc:date>
350 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
351 <dc:source>Phys. Rev. Lett. 130, 051001 (2023)</dc:source>
352 <dc:type>article</dc:type>
353 <dc:identifier>doi:10.1103/PhysRevLett.130.051001</dc:identifier>
354 <prism:doi>10.1103/PhysRevLett.130.051001</prism:doi>
355 <prism:publicationName>Physical Review Letters</prism:publicationName>
356 <prism:volume>130</prism:volume>
357 <prism:number>5</prism:number>
358 <prism:publicationDate>2023-01-31T10:00:00+00:00</prism:publicationDate>
359 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.051001</prism:url>
360 <prism:startingPage>051001</prism:startingPage>
361 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
362 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
363 </item>
364 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.041001">
365 <title>Doppler Boosted Dust Emission and Cosmic Infrared Background–Galaxy Cross-Correlations: A New Probe of Cosmology and Astrophysics</title>
366 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.041001</link>
367 <description>Author(s): Abhishek S. Maniyar, Simone Ferraro, and Emmanuel Schaan<br/><p>We identify a new cosmological signal, the Doppler-boosted cosmic infrared background (DB CIB), arising from the peculiar motion of the galaxies whose thermal dust emission source the cosmic infrared background (CIB). This new observable is an independent probe of the cosmic velocity field, highly a…</p><br/>[Phys. Rev. Lett. 130, 041001] Published Tue Jan 24, 2023</description>
368 <content:encoded><![CDATA[<p>Author(s): Abhishek S. Maniyar, Simone Ferraro, and Emmanuel Schaan</p><p>We identify a new cosmological signal, the Doppler-boosted cosmic infrared background (DB CIB), arising from the peculiar motion of the galaxies whose thermal dust emission source the cosmic infrared background (CIB). This new observable is an independent probe of the cosmic velocity field, highly a…</p><br/><p>[Phys. Rev. Lett. 130, 041001] Published Tue Jan 24, 2023</p>]]></content:encoded>
369 <dc:title>Doppler Boosted Dust Emission and Cosmic Infrared Background–Galaxy Cross-Correlations: A New Probe of Cosmology and Astrophysics</dc:title>
370 <dc:creator>Abhishek S. Maniyar, Simone Ferraro, and Emmanuel Schaan</dc:creator>
371 <dc:date>2023-01-24T10:00:00+00:00</dc:date>
372 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
373 <dc:source>Phys. Rev. Lett. 130, 041001 (2023)</dc:source>
374 <dc:type>article</dc:type>
375 <dc:identifier>doi:10.1103/PhysRevLett.130.041001</dc:identifier>
376 <prism:doi>10.1103/PhysRevLett.130.041001</prism:doi>
377 <prism:publicationName>Physical Review Letters</prism:publicationName>
378 <prism:volume>130</prism:volume>
379 <prism:number>4</prism:number>
380 <prism:publicationDate>2023-01-24T10:00:00+00:00</prism:publicationDate>
381 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.041001</prism:url>
382 <prism:startingPage>041001</prism:startingPage>
383 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
384 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
385 </item>
386 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.021401">
387 <title>Coordinate Singularities of Self-Interacting Vector Field Theories</title>
388 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.021401</link>
389 <description>Author(s): Andrew Coates and Fethi M. Ramazanoğlu<br/><p>Self-interacting vectors are seeing a burst of interest where various groups demonstrated that the field evolution ends in finite time. Two nonequivalent criteria have been offered to identify this breakdown: (i) the vector constraint equation cannot be satisfied beyond a point where the breakdown o…</p><br/>[Phys. Rev. Lett. 130, 021401] Published Thu Jan 12, 2023</description>
390 <content:encoded><![CDATA[<p>Author(s): Andrew Coates and Fethi M. Ramazanoğlu</p><p>Self-interacting vectors are seeing a burst of interest where various groups demonstrated that the field evolution ends in finite time. Two nonequivalent criteria have been offered to identify this breakdown: (i) the vector constraint equation cannot be satisfied beyond a point where the breakdown o…</p><br/><p>[Phys. Rev. Lett. 130, 021401] Published Thu Jan 12, 2023</p>]]></content:encoded>
391 <dc:title>Coordinate Singularities of Self-Interacting Vector Field Theories</dc:title>
392 <dc:creator>Andrew Coates and Fethi M. Ramazanoğlu</dc:creator>
393 <dc:date>2023-01-12T10:00:00+00:00</dc:date>
394 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
395 <dc:source>Phys. Rev. Lett. 130, 021401 (2023)</dc:source>
396 <dc:type>article</dc:type>
397 <dc:identifier>doi:10.1103/PhysRevLett.130.021401</dc:identifier>
398 <prism:doi>10.1103/PhysRevLett.130.021401</prism:doi>
399 <prism:publicationName>Physical Review Letters</prism:publicationName>
400 <prism:volume>130</prism:volume>
401 <prism:number>2</prism:number>
402 <prism:publicationDate>2023-01-12T10:00:00+00:00</prism:publicationDate>
403 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.021401</prism:url>
404 <prism:startingPage>021401</prism:startingPage>
405 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
406 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
407 </item>
408 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.021001">
409 <title>Novel Ringdown Amplitude-Phase Consistency Test</title>
410 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.021001</link>
411 <description>Author(s): Xisco Jiménez Forteza, Swetha Bhagwat, Sumit Kumar, and Paolo Pani<br/><p>The ringdown signal emitted during a binary black hole coalescence can be modeled as a linear superposition of the characteristic damped modes of the remnant black hole that get excited during the merger phase. While checking the consistency of the measured frequencies and damping times against the …</p><br/>[Phys. Rev. Lett. 130, 021001] Published Wed Jan 11, 2023</description>
412 <content:encoded><![CDATA[<p>Author(s): Xisco Jiménez Forteza, Swetha Bhagwat, Sumit Kumar, and Paolo Pani</p><p>The ringdown signal emitted during a binary black hole coalescence can be modeled as a linear superposition of the characteristic damped modes of the remnant black hole that get excited during the merger phase. While checking the consistency of the measured frequencies and damping times against the …</p><br/><p>[Phys. Rev. Lett. 130, 021001] Published Wed Jan 11, 2023</p>]]></content:encoded>
413 <dc:title>Novel Ringdown Amplitude-Phase Consistency Test</dc:title>
414 <dc:creator>Xisco Jiménez Forteza, Swetha Bhagwat, Sumit Kumar, and Paolo Pani</dc:creator>
415 <dc:date>2023-01-11T10:00:00+00:00</dc:date>
416 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
417 <dc:source>Phys. Rev. Lett. 130, 021001 (2023)</dc:source>
418 <dc:type>article</dc:type>
419 <dc:identifier>doi:10.1103/PhysRevLett.130.021001</dc:identifier>
420 <prism:doi>10.1103/PhysRevLett.130.021001</prism:doi>
421 <prism:publicationName>Physical Review Letters</prism:publicationName>
422 <prism:volume>130</prism:volume>
423 <prism:number>2</prism:number>
424 <prism:publicationDate>2023-01-11T10:00:00+00:00</prism:publicationDate>
425 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.021001</prism:url>
426 <prism:startingPage>021001</prism:startingPage>
427 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
428 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
429 </item>
430 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.011402">
431 <title>Dynamical Instability of Self-Gravitating Membranes</title>
432 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.011402</link>
433 <description>Author(s): Huan Yang, Béatrice Bonga, and Zhen Pan<br/><p>We show that a generic relativistic membrane with in-plane pressure and surface density having the same sign is unstable with respect to a series of warping mode instabilities with high wave numbers. We also examine the criteria of instability for commonly studied exotic compact objects with membran…</p><br/>[Phys. Rev. Lett. 130, 011402] Published Thu Jan 05, 2023</description>
434 <content:encoded><![CDATA[<p>Author(s): Huan Yang, Béatrice Bonga, and Zhen Pan</p><p>We show that a generic relativistic membrane with in-plane pressure and surface density having the same sign is unstable with respect to a series of warping mode instabilities with high wave numbers. We also examine the criteria of instability for commonly studied exotic compact objects with membran…</p><br/><p>[Phys. Rev. Lett. 130, 011402] Published Thu Jan 05, 2023</p>]]></content:encoded>
435 <dc:title>Dynamical Instability of Self-Gravitating Membranes</dc:title>
436 <dc:creator>Huan Yang, Béatrice Bonga, and Zhen Pan</dc:creator>
437 <dc:date>2023-01-05T10:00:00+00:00</dc:date>
438 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
439 <dc:source>Phys. Rev. Lett. 130, 011402 (2023)</dc:source>
440 <dc:type>article</dc:type>
441 <dc:identifier>doi:10.1103/PhysRevLett.130.011402</dc:identifier>
442 <prism:doi>10.1103/PhysRevLett.130.011402</prism:doi>
443 <prism:publicationName>Physical Review Letters</prism:publicationName>
444 <prism:volume>130</prism:volume>
445 <prism:number>1</prism:number>
446 <prism:publicationDate>2023-01-05T10:00:00+00:00</prism:publicationDate>
447 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.011402</prism:url>
448 <prism:startingPage>011402</prism:startingPage>
449 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
450 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
451 </item>
452 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.130.011401">
453 <title>Supertranslation-Invariant Formula for the Angular Momentum Flux in Gravitational Scattering</title>
454 <link>http://link.aps.org/doi/10.1103/PhysRevLett.130.011401</link>
455 <description>Author(s): Reza Javadinezhad and Massimo Porrati<br/><p>The angular momentum radiated in gravitational scattering can be changed by performing a supertranslation of the asymptotic metric, i.e., by adding radiation with infinite wavelength to the metric. This puzzling property can be avoided by adopting a supertranslation-invariant definition of the angul…</p><br/>[Phys. Rev. Lett. 130, 011401] Published Tue Jan 03, 2023</description>
456 <content:encoded><![CDATA[<p>Author(s): Reza Javadinezhad and Massimo Porrati</p><p>The angular momentum radiated in gravitational scattering can be changed by performing a supertranslation of the asymptotic metric, i.e., by adding radiation with infinite wavelength to the metric. This puzzling property can be avoided by adopting a supertranslation-invariant definition of the angul…</p><br/><p>[Phys. Rev. Lett. 130, 011401] Published Tue Jan 03, 2023</p>]]></content:encoded>
457 <dc:title>Supertranslation-Invariant Formula for the Angular Momentum Flux in Gravitational Scattering</dc:title>
458 <dc:creator>Reza Javadinezhad and Massimo Porrati</dc:creator>
459 <dc:date>2023-01-03T10:00:00+00:00</dc:date>
460 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
461 <dc:source>Phys. Rev. Lett. 130, 011401 (2023)</dc:source>
462 <dc:type>article</dc:type>
463 <dc:identifier>doi:10.1103/PhysRevLett.130.011401</dc:identifier>
464 <prism:doi>10.1103/PhysRevLett.130.011401</prism:doi>
465 <prism:publicationName>Physical Review Letters</prism:publicationName>
466 <prism:volume>130</prism:volume>
467 <prism:number>1</prism:number>
468 <prism:publicationDate>2023-01-03T10:00:00+00:00</prism:publicationDate>
469 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.130.011401</prism:url>
470 <prism:startingPage>011401</prism:startingPage>
471 <dc:subject>Cosmology, Astrophysics, and Gravitation</dc:subject>
472 <prism:section>Cosmology, Astrophysics, and Gravitation</prism:section>
473 </item>
474 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261104">
475 <title>Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates</title>
476 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261104</link>
477 <description>Author(s): Llibert Aresté Saló, Katy Clough, and Pau Figueras<br/><p>We show that the most general scalar-tensor theory of gravity up to four derivatives in $3+1$ dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by stud…</p><br/>[Phys. Rev. Lett. 129, 261104] Published Fri Dec 23, 2022</description>
478 <content:encoded><![CDATA[<p>Author(s): Llibert Aresté Saló, Katy Clough, and Pau Figueras</p><p>We show that the most general scalar-tensor theory of gravity up to four derivatives in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>3</mn><mo>+</mo><mn>1</mn></mrow></math> dimensions is well-posed in a modified version of the CCZ4 formulation of the Einstein equations in singularity-avoiding coordinates. We demonstrate the robustness of our new formulation in practice by studyi…</p><br/><p>[Phys. Rev. Lett. 129, 261104] Published Fri Dec 23, 2022</p>]]></content:encoded>
479 <dc:title>Well-Posedness of the Four-Derivative Scalar-Tensor Theory of Gravity in Singularity Avoiding Coordinates</dc:title>
480 <dc:creator>Llibert Aresté Saló, Katy Clough, and Pau Figueras</dc:creator>
481 <dc:date>2022-12-23T10:00:00+00:00</dc:date>
482 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
483 <dc:source>Phys. Rev. Lett. 129, 261104 (2022)</dc:source>
484 <dc:type>article</dc:type>
485 <dc:identifier>doi:10.1103/PhysRevLett.129.261104</dc:identifier>
486 <prism:doi>10.1103/PhysRevLett.129.261104</prism:doi>
487 <prism:publicationName>Physical Review Letters</prism:publicationName>
488 <prism:volume>129</prism:volume>
489 <prism:number>26</prism:number>
490 <prism:publicationDate>2022-12-23T10:00:00+00:00</prism:publicationDate>
491 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261104</prism:url>
492 <prism:startingPage>261104</prism:startingPage>
493 <dc:subject>Gravitation and Astrophysics</dc:subject>
494 <prism:section>Gravitation and Astrophysics</prism:section>
495 </item>
496 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261303">
497 <title>Domain Walls Seeding the Electroweak Phase Transition</title>
498 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261303</link>
499 <description>Author(s): Simone Blasi and Alberto Mariotti<br/><p>Topological defects can act as local impurities that seed cosmological phase transitions. In this Letter, we study the case of domain walls and how they can affect the electroweak phase transition in the singlet-extended standard model with a ${Z}_{2}$-symmetric potential. When the transition occurs…</p><br/>[Phys. Rev. Lett. 129, 261303] Published Fri Dec 23, 2022</description>
500 <content:encoded><![CDATA[<p>Author(s): Simone Blasi and Alberto Mariotti</p><p>Topological defects can act as local impurities that seed cosmological phase transitions. In this Letter, we study the case of domain walls and how they can affect the electroweak phase transition in the singlet-extended standard model with a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><msub><mi>Z</mi><mn>2</mn></msub></math>-symmetric potential. When the transition occurs in two…</p><br/><p>[Phys. Rev. Lett. 129, 261303] Published Fri Dec 23, 2022</p>]]></content:encoded>
501 <dc:title>Domain Walls Seeding the Electroweak Phase Transition</dc:title>
502 <dc:creator>Simone Blasi and Alberto Mariotti</dc:creator>
503 <dc:date>2022-12-23T10:00:00+00:00</dc:date>
504 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
505 <dc:source>Phys. Rev. Lett. 129, 261303 (2022)</dc:source>
506 <dc:type>article</dc:type>
507 <dc:identifier>doi:10.1103/PhysRevLett.129.261303</dc:identifier>
508 <prism:doi>10.1103/PhysRevLett.129.261303</prism:doi>
509 <prism:publicationName>Physical Review Letters</prism:publicationName>
510 <prism:volume>129</prism:volume>
511 <prism:number>26</prism:number>
512 <prism:publicationDate>2022-12-23T10:00:00+00:00</prism:publicationDate>
513 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261303</prism:url>
514 <prism:startingPage>261303</prism:startingPage>
515 <dc:subject>Gravitation and Astrophysics</dc:subject>
516 <prism:section>Gravitation and Astrophysics</prism:section>
517 </item>
518 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261301">
519 <title>Observing Nulling of Primordial Correlations via the 21-cm Signal</title>
520 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261301</link>
521 <description>Author(s): Shyam Balaji, H. V. Ragavendra, Shiv K. Sethi, Joseph Silk, and L. Sriramkumar<br/><p>The 21-cm line emitted by neutral hydrogen (HI) during the Dark Ages carries imprints of pristine primordial correlations. In models of inflation driven by a single, canonical scalar field, we show that a phase of ultra-slow-roll can lead to a <i>null</i> in <i>all</i> the primordial correlations at a specific wa…</p><br/>[Phys. Rev. Lett. 129, 261301] Published Thu Dec 22, 2022</description>
522 <content:encoded><![CDATA[<p>Author(s): Shyam Balaji, H. V. Ragavendra, Shiv K. Sethi, Joseph Silk, and L. Sriramkumar</p><p>The 21-cm line emitted by neutral hydrogen (HI) during the Dark Ages carries imprints of pristine primordial correlations. In models of inflation driven by a single, canonical scalar field, we show that a phase of ultra-slow-roll can lead to a <i>null</i> in <i>all</i> the primordial correlations at a specific wa…</p><br/><p>[Phys. Rev. Lett. 129, 261301] Published Thu Dec 22, 2022</p>]]></content:encoded>
523 <dc:title>Observing Nulling of Primordial Correlations via the 21-cm Signal</dc:title>
524 <dc:creator>Shyam Balaji, H. V. Ragavendra, Shiv K. Sethi, Joseph Silk, and L. Sriramkumar</dc:creator>
525 <dc:date>2022-12-22T10:00:00+00:00</dc:date>
526 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
527 <dc:source>Phys. Rev. Lett. 129, 261301 (2022)</dc:source>
528 <dc:type>article</dc:type>
529 <dc:identifier>doi:10.1103/PhysRevLett.129.261301</dc:identifier>
530 <prism:doi>10.1103/PhysRevLett.129.261301</prism:doi>
531 <prism:publicationName>Physical Review Letters</prism:publicationName>
532 <prism:volume>129</prism:volume>
533 <prism:number>26</prism:number>
534 <prism:publicationDate>2022-12-22T10:00:00+00:00</prism:publicationDate>
535 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261301</prism:url>
536 <prism:startingPage>261301</prism:startingPage>
537 <dc:subject>Gravitation and Astrophysics</dc:subject>
538 <prism:section>Gravitation and Astrophysics</prism:section>
539 </item>
540 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261302">
541 <title>Glueball Dark Matter Revisited</title>
542 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261302</link>
543 <description>Author(s): Pierluca Carenza, Roman Pasechnik, Gustavo Salinas, and Zhi-Wei Wang<br/><p>We revisit the possibility that dark matter is composed of stable scalar glueballs of a confining dark SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for the first time in a thermal effective theory accounting for strong-coupling dynamics. An important i…</p><br/>[Phys. Rev. Lett. 129, 261302] Published Thu Dec 22, 2022</description>
544 <content:encoded><![CDATA[<p>Author(s): Pierluca Carenza, Roman Pasechnik, Gustavo Salinas, and Zhi-Wei Wang</p><p>We revisit the possibility that dark matter is composed of stable scalar glueballs of a confining dark SU(3) gauge theory coupled only to gravity. The relic abundance of dark glueballs is studied for the first time in a thermal effective theory accounting for strong-coupling dynamics. An important i…</p><br/><p>[Phys. Rev. Lett. 129, 261302] Published Thu Dec 22, 2022</p>]]></content:encoded>
545 <dc:title>Glueball Dark Matter Revisited</dc:title>
546 <dc:creator>Pierluca Carenza, Roman Pasechnik, Gustavo Salinas, and Zhi-Wei Wang</dc:creator>
547 <dc:date>2022-12-22T10:00:00+00:00</dc:date>
548 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
549 <dc:source>Phys. Rev. Lett. 129, 261302 (2022)</dc:source>
550 <dc:type>article</dc:type>
551 <dc:identifier>doi:10.1103/PhysRevLett.129.261302</dc:identifier>
552 <prism:doi>10.1103/PhysRevLett.129.261302</prism:doi>
553 <prism:publicationName>Physical Review Letters</prism:publicationName>
554 <prism:volume>129</prism:volume>
555 <prism:number>26</prism:number>
556 <prism:publicationDate>2022-12-22T10:00:00+00:00</prism:publicationDate>
557 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261302</prism:url>
558 <prism:startingPage>261302</prism:startingPage>
559 <dc:subject>Gravitation and Astrophysics</dc:subject>
560 <prism:section>Gravitation and Astrophysics</prism:section>
561 </item>
562 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261102">
563 <title>Quantum Fluxes at the Inner Horizon of a Spinning Black Hole</title>
564 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261102</link>
565 <description>Author(s): Noa Zilberman, Marc Casals, Amos Ori, and Adrian C. Ottewill<br/><p>Rotating or charged classical black holes in isolation possess a special surface in their interior, the <i>Cauchy horizon</i>, beyond which the evolution of spacetime (based on the equations of General Relativity) ceases to be deterministic. In this Letter, we study the effect of a quantum massless scalar …</p><br/>[Phys. Rev. Lett. 129, 261102] Published Wed Dec 21, 2022</description>
566 <content:encoded><![CDATA[<p>Author(s): Noa Zilberman, Marc Casals, Amos Ori, and Adrian C. Ottewill</p><p>Rotating or charged classical black holes in isolation possess a special surface in their interior, the <i>Cauchy horizon</i>, beyond which the evolution of spacetime (based on the equations of General Relativity) ceases to be deterministic. In this Letter, we study the effect of a quantum massless scalar …</p><br/><p>[Phys. Rev. Lett. 129, 261102] Published Wed Dec 21, 2022</p>]]></content:encoded>
567 <dc:title>Quantum Fluxes at the Inner Horizon of a Spinning Black Hole</dc:title>
568 <dc:creator>Noa Zilberman, Marc Casals, Amos Ori, and Adrian C. Ottewill</dc:creator>
569 <dc:date>2022-12-21T10:00:00+00:00</dc:date>
570 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
571 <dc:source>Phys. Rev. Lett. 129, 261102 (2022)</dc:source>
572 <dc:type>article</dc:type>
573 <dc:identifier>doi:10.1103/PhysRevLett.129.261102</dc:identifier>
574 <prism:doi>10.1103/PhysRevLett.129.261102</prism:doi>
575 <prism:publicationName>Physical Review Letters</prism:publicationName>
576 <prism:volume>129</prism:volume>
577 <prism:number>26</prism:number>
578 <prism:publicationDate>2022-12-21T10:00:00+00:00</prism:publicationDate>
579 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261102</prism:url>
580 <prism:startingPage>261102</prism:startingPage>
581 <dc:subject>Gravitation and Astrophysics</dc:subject>
582 <prism:section>Gravitation and Astrophysics</prism:section>
583 </item>
584 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261103">
585 <title>Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations</title>
586 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261103</link>
587 <description>Author(s): Zhen Cao <em>et al.</em> (LHAASO Collaboration)<br/><p>The first measurements from a newly built gamma-ray observatory have been analyzed for signs of the decay of heavy dark matter, putting a lower limit on the hypothetical particles’ lifetime.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.261103.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 261103] Published Wed Dec 21, 2022</description>
588 <content:encoded><![CDATA[<p>Author(s): Zhen Cao <em>et al.</em> (LHAASO Collaboration)</p><p>The first measurements from a newly built gamma-ray observatory have been analyzed for signs of the decay of heavy dark matter, putting a lower limit on the hypothetical particles’ lifetime.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.261103.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 261103] Published Wed Dec 21, 2022</p>]]></content:encoded>
589 <dc:title>Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations</dc:title>
590 <dc:creator>Zhen Cao <em>et al.</em> (LHAASO Collaboration)</dc:creator>
591 <dc:date>2022-12-21T10:00:00+00:00</dc:date>
592 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
593 <dc:source>Phys. Rev. Lett. 129, 261103 (2022)</dc:source>
594 <dc:type>article</dc:type>
595 <dc:identifier>doi:10.1103/PhysRevLett.129.261103</dc:identifier>
596 <prism:doi>10.1103/PhysRevLett.129.261103</prism:doi>
597 <prism:publicationName>Physical Review Letters</prism:publicationName>
598 <prism:volume>129</prism:volume>
599 <prism:number>26</prism:number>
600 <prism:publicationDate>2022-12-21T10:00:00+00:00</prism:publicationDate>
601 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261103</prism:url>
602 <prism:startingPage>261103</prism:startingPage>
603 <dc:subject>Gravitation and Astrophysics</dc:subject>
604 <prism:section>Gravitation and Astrophysics</prism:section>
605 </item>
606 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.261101">
607 <title>Time-Dependent and Quasisteady Features of Fast Neutrino-Flavor Conversion</title>
608 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.261101</link>
609 <description>Author(s): Hiroki Nagakura and Masamichi Zaizen<br/><p>Despite the theoretical indication that fast neutrino-flavor conversion (FFC) ubiquitously occurs iin core-collapse supernovae and binary neutron star mergers, the lack of global simulations has been the greatest obstacle to study their astrophysical consequences. In this Letter, we present large-sc…</p><br/>[Phys. Rev. Lett. 129, 261101] Published Mon Dec 19, 2022</description>
610 <content:encoded><![CDATA[<p>Author(s): Hiroki Nagakura and Masamichi Zaizen</p><p>Despite the theoretical indication that fast neutrino-flavor conversion (FFC) ubiquitously occurs iin core-collapse supernovae and binary neutron star mergers, the lack of global simulations has been the greatest obstacle to study their astrophysical consequences. In this Letter, we present large-sc…</p><br/><p>[Phys. Rev. Lett. 129, 261101] Published Mon Dec 19, 2022</p>]]></content:encoded>
611 <dc:title>Time-Dependent and Quasisteady Features of Fast Neutrino-Flavor Conversion</dc:title>
612 <dc:creator>Hiroki Nagakura and Masamichi Zaizen</dc:creator>
613 <dc:date>2022-12-19T10:00:00+00:00</dc:date>
614 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
615 <dc:source>Phys. Rev. Lett. 129, 261101 (2022)</dc:source>
616 <dc:type>article</dc:type>
617 <dc:identifier>doi:10.1103/PhysRevLett.129.261101</dc:identifier>
618 <prism:doi>10.1103/PhysRevLett.129.261101</prism:doi>
619 <prism:publicationName>Physical Review Letters</prism:publicationName>
620 <prism:volume>129</prism:volume>
621 <prism:number>26</prism:number>
622 <prism:publicationDate>2022-12-19T10:00:00+00:00</prism:publicationDate>
623 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.261101</prism:url>
624 <prism:startingPage>261101</prism:startingPage>
625 <dc:subject>Gravitation and Astrophysics</dc:subject>
626 <prism:section>Gravitation and Astrophysics</prism:section>
627 </item>
628 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.251103">
629 <title>Cosmic-Ray Boron Flux Measured from $8.4\text{ }\text{ }\mathrm{GeV}/n$ to $3.8\text{ }\text{ }\mathrm{TeV}/n$ with the Calorimetric Electron Telescope on the International Space Station</title>
630 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.251103</link>
631 <description>Author(s): O. Adriani <em>et al.</em> (CALET Collaboration)<br/><p>We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from $8.4\text{ }\text{ }\mathrm{GeV}/n$ to $3.8\text{ }\text{ }\mathrm{TeV}/n$ based on the data collected by the Calorimetric Electron Telescope (CALET) durin…</p><br/>[Phys. Rev. Lett. 129, 251103] Published Fri Dec 16, 2022</description>
632 <content:encoded><![CDATA[<p>Author(s): O. Adriani <em>et al.</em> (CALET Collaboration)</p><p>We present the measurement of the energy dependence of the boron flux in cosmic rays and its ratio to the carbon flux in an energy interval from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>8.4</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi><mo>/</mo><mi>n</mi></mrow></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>3.8</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi><mo>/</mo><mi>n</mi></mrow></math> based on the data collected by the Calorimetric Electron Telescope (CALET) during <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mo>∼</mo><mn>6.4</mn><mtext> </mtext><mtext> </mtext><mi>yr</mi></math> of operation on the International Space…</p><br/><p>[Phys. Rev. Lett. 129, 251103] Published Fri Dec 16, 2022</p>]]></content:encoded>
633 <dc:title>Cosmic-Ray Boron Flux Measured from $8.4\text{ }\text{ }\mathrm{GeV}/n$ to $3.8\text{ }\text{ }\mathrm{TeV}/n$ with the Calorimetric Electron Telescope on the International Space Station</dc:title>
634 <dc:creator>O. Adriani <em>et al.</em> (CALET Collaboration)</dc:creator>
635 <dc:date>2022-12-16T10:00:00+00:00</dc:date>
636 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
637 <dc:source>Phys. Rev. Lett. 129, 251103 (2022)</dc:source>
638 <dc:type>article</dc:type>
639 <dc:identifier>doi:10.1103/PhysRevLett.129.251103</dc:identifier>
640 <prism:doi>10.1103/PhysRevLett.129.251103</prism:doi>
641 <prism:publicationName>Physical Review Letters</prism:publicationName>
642 <prism:volume>129</prism:volume>
643 <prism:number>25</prism:number>
644 <prism:publicationDate>2022-12-16T10:00:00+00:00</prism:publicationDate>
645 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.251103</prism:url>
646 <prism:startingPage>251103</prism:startingPage>
647 <dc:subject>Gravitation and Astrophysics</dc:subject>
648 <prism:section>Gravitation and Astrophysics</prism:section>
649 </item>
650 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.251104">
651 <title>de Sitter Bubbles from Anti–de Sitter Fluctuations</title>
652 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.251104</link>
653 <description>Author(s): Anxo Biasi, Oleg Evnin, and Spyros Sypsas<br/><p>A theoretical model shows that de Sitter geometries may emerge locally in globally anti-de Sitter spacetimes via unstable fluctuations.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.251104.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 251104] Published Fri Dec 16, 2022</description>
654 <content:encoded><![CDATA[<p>Author(s): Anxo Biasi, Oleg Evnin, and Spyros Sypsas</p><p>A theoretical model shows that de Sitter geometries may emerge locally in globally anti-de Sitter spacetimes via unstable fluctuations.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.251104.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 251104] Published Fri Dec 16, 2022</p>]]></content:encoded>
655 <dc:title>de Sitter Bubbles from Anti–de Sitter Fluctuations</dc:title>
656 <dc:creator>Anxo Biasi, Oleg Evnin, and Spyros Sypsas</dc:creator>
657 <dc:date>2022-12-16T10:00:00+00:00</dc:date>
658 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
659 <dc:source>Phys. Rev. Lett. 129, 251104 (2022)</dc:source>
660 <dc:type>article</dc:type>
661 <dc:identifier>doi:10.1103/PhysRevLett.129.251104</dc:identifier>
662 <prism:doi>10.1103/PhysRevLett.129.251104</prism:doi>
663 <prism:publicationName>Physical Review Letters</prism:publicationName>
664 <prism:volume>129</prism:volume>
665 <prism:number>25</prism:number>
666 <prism:publicationDate>2022-12-16T10:00:00+00:00</prism:publicationDate>
667 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.251104</prism:url>
668 <prism:startingPage>251104</prism:startingPage>
669 <dc:subject>Gravitation and Astrophysics</dc:subject>
670 <prism:section>Gravitation and Astrophysics</prism:section>
671 </item>
672 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.251101">
673 <title>Optimal Transport Reconstruction of Baryon Acoustic Oscillations</title>
674 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.251101</link>
675 <description>Author(s): Farnik Nikakhtar, Ravi K. Sheth, Bruno Lévy, and Roya Mohayaee<br/><p>A weighted, semidiscrete, fast optimal transport (OT) algorithm for reconstructing the Lagrangian positions of protohalos from their evolved Eulerian positions is presented. The algorithm makes use of a mass estimate of the biased tracers and of the distribution of the remaining mass (the “dust”) bu…</p><br/>[Phys. Rev. Lett. 129, 251101] Published Wed Dec 14, 2022</description>
676 <content:encoded><![CDATA[<p>Author(s): Farnik Nikakhtar, Ravi K. Sheth, Bruno Lévy, and Roya Mohayaee</p><p>A weighted, semidiscrete, fast optimal transport (OT) algorithm for reconstructing the Lagrangian positions of protohalos from their evolved Eulerian positions is presented. The algorithm makes use of a mass estimate of the biased tracers and of the distribution of the remaining mass (the “dust”) bu…</p><br/><p>[Phys. Rev. Lett. 129, 251101] Published Wed Dec 14, 2022</p>]]></content:encoded>
677 <dc:title>Optimal Transport Reconstruction of Baryon Acoustic Oscillations</dc:title>
678 <dc:creator>Farnik Nikakhtar, Ravi K. Sheth, Bruno Lévy, and Roya Mohayaee</dc:creator>
679 <dc:date>2022-12-14T10:00:00+00:00</dc:date>
680 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
681 <dc:source>Phys. Rev. Lett. 129, 251101 (2022)</dc:source>
682 <dc:type>article</dc:type>
683 <dc:identifier>doi:10.1103/PhysRevLett.129.251101</dc:identifier>
684 <prism:doi>10.1103/PhysRevLett.129.251101</prism:doi>
685 <prism:publicationName>Physical Review Letters</prism:publicationName>
686 <prism:volume>129</prism:volume>
687 <prism:number>25</prism:number>
688 <prism:publicationDate>2022-12-14T10:00:00+00:00</prism:publicationDate>
689 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.251101</prism:url>
690 <prism:startingPage>251101</prism:startingPage>
691 <dc:subject>Gravitation and Astrophysics</dc:subject>
692 <prism:section>Gravitation and Astrophysics</prism:section>
693 </item>
694 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.251102">
695 <title>Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey</title>
696 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.251102</link>
697 <description>Author(s): Joshua W. Foster, Samuel J. Witte, Matthew Lawson, Tim Linden, Vishal Gajjar, Christoph Weniger, and Benjamin R. Safdi<br/><p>A neutron star’s ultrastrong magnetic field could create the conditions for uncloaking a promising dark matter candidate.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.251102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 251102] Published Tue Dec 13, 2022</description>
698 <content:encoded><![CDATA[<p>Author(s): Joshua W. Foster, Samuel J. Witte, Matthew Lawson, Tim Linden, Vishal Gajjar, Christoph Weniger, and Benjamin R. Safdi</p><p>A neutron star’s ultrastrong magnetic field could create the conditions for uncloaking a promising dark matter candidate.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.251102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 251102] Published Tue Dec 13, 2022</p>]]></content:encoded>
699 <dc:title>Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey</dc:title>
700 <dc:creator>Joshua W. Foster, Samuel J. Witte, Matthew Lawson, Tim Linden, Vishal Gajjar, Christoph Weniger, and Benjamin R. Safdi</dc:creator>
701 <dc:date>2022-12-13T10:00:00+00:00</dc:date>
702 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
703 <dc:source>Phys. Rev. Lett. 129, 251102 (2022)</dc:source>
704 <dc:type>article</dc:type>
705 <dc:identifier>doi:10.1103/PhysRevLett.129.251102</dc:identifier>
706 <prism:doi>10.1103/PhysRevLett.129.251102</prism:doi>
707 <prism:publicationName>Physical Review Letters</prism:publicationName>
708 <prism:volume>129</prism:volume>
709 <prism:number>25</prism:number>
710 <prism:publicationDate>2022-12-13T10:00:00+00:00</prism:publicationDate>
711 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.251102</prism:url>
712 <prism:startingPage>251102</prism:startingPage>
713 <dc:subject>Gravitation and Astrophysics</dc:subject>
714 <prism:section>Gravitation and Astrophysics</prism:section>
715 </item>
716 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.241102">
717 <title>Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way</title>
718 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.241102</link>
719 <description>Author(s): Akash Biswas, Bidya Binay Karak, and Robert Cameron<br/><p>A striking feature of the solar cycle is that at the beginning, sunspots appear around midlatitudes, and over time the latitudes of emergences migrate toward the equator. The maximum level of activity (e.g., sunspot number) varies from cycle to cycle. For strong cycles, the activity begins early and…</p><br/>[Phys. Rev. Lett. 129, 241102] Published Wed Dec 07, 2022</description>
720 <content:encoded><![CDATA[<p>Author(s): Akash Biswas, Bidya Binay Karak, and Robert Cameron</p><p>A striking feature of the solar cycle is that at the beginning, sunspots appear around midlatitudes, and over time the latitudes of emergences migrate toward the equator. The maximum level of activity (e.g., sunspot number) varies from cycle to cycle. For strong cycles, the activity begins early and…</p><br/><p>[Phys. Rev. Lett. 129, 241102] Published Wed Dec 07, 2022</p>]]></content:encoded>
721 <dc:title>Toroidal Flux Loss due to Flux Emergence Explains why Solar Cycles Rise Differently but Decay in a Similar Way</dc:title>
722 <dc:creator>Akash Biswas, Bidya Binay Karak, and Robert Cameron</dc:creator>
723 <dc:date>2022-12-07T10:00:00+00:00</dc:date>
724 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
725 <dc:source>Phys. Rev. Lett. 129, 241102 (2022)</dc:source>
726 <dc:type>article</dc:type>
727 <dc:identifier>doi:10.1103/PhysRevLett.129.241102</dc:identifier>
728 <prism:doi>10.1103/PhysRevLett.129.241102</prism:doi>
729 <prism:publicationName>Physical Review Letters</prism:publicationName>
730 <prism:volume>129</prism:volume>
731 <prism:number>24</prism:number>
732 <prism:publicationDate>2022-12-07T10:00:00+00:00</prism:publicationDate>
733 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.241102</prism:url>
734 <prism:startingPage>241102</prism:startingPage>
735 <dc:subject>Gravitation and Astrophysics</dc:subject>
736 <prism:section>Gravitation and Astrophysics</prism:section>
737 </item>
738 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.241103">
739 <title>Gravitational Waves from Extreme-Mass-Ratio Systems in Astrophysical Environments</title>
740 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.241103</link>
741 <description>Author(s): Vitor Cardoso, Kyriakos Destounis, Francisco Duque, Rodrigo Panosso Macedo, and Andrea Maselli<br/><p>We establish a generic, fully relativistic formalism to study gravitational-wave emission by extreme-mass-ratio systems in spherically symmetric, nonvacuum black hole spacetimes. The potential applications to astrophysical setups range from black holes accreting baryonic matter to those within axion…</p><br/>[Phys. Rev. Lett. 129, 241103] Published Wed Dec 07, 2022</description>
742 <content:encoded><![CDATA[<p>Author(s): Vitor Cardoso, Kyriakos Destounis, Francisco Duque, Rodrigo Panosso Macedo, and Andrea Maselli</p><p>We establish a generic, fully relativistic formalism to study gravitational-wave emission by extreme-mass-ratio systems in spherically symmetric, nonvacuum black hole spacetimes. The potential applications to astrophysical setups range from black holes accreting baryonic matter to those within axion…</p><br/><p>[Phys. Rev. Lett. 129, 241103] Published Wed Dec 07, 2022</p>]]></content:encoded>
743 <dc:title>Gravitational Waves from Extreme-Mass-Ratio Systems in Astrophysical Environments</dc:title>
744 <dc:creator>Vitor Cardoso, Kyriakos Destounis, Francisco Duque, Rodrigo Panosso Macedo, and Andrea Maselli</dc:creator>
745 <dc:date>2022-12-07T10:00:00+00:00</dc:date>
746 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
747 <dc:source>Phys. Rev. Lett. 129, 241103 (2022)</dc:source>
748 <dc:type>article</dc:type>
749 <dc:identifier>doi:10.1103/PhysRevLett.129.241103</dc:identifier>
750 <prism:doi>10.1103/PhysRevLett.129.241103</prism:doi>
751 <prism:publicationName>Physical Review Letters</prism:publicationName>
752 <prism:volume>129</prism:volume>
753 <prism:number>24</prism:number>
754 <prism:publicationDate>2022-12-07T10:00:00+00:00</prism:publicationDate>
755 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.241103</prism:url>
756 <prism:startingPage>241103</prism:startingPage>
757 <dc:subject>Gravitation and Astrophysics</dc:subject>
758 <prism:section>Gravitation and Astrophysics</prism:section>
759 </item>
760 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.241301">
761 <title>Search for Ultralight Dark Matter from Long-Term Frequency Comparisons of Optical and Microwave Atomic Clocks</title>
762 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.241301</link>
763 <description>Author(s): Takumi Kobayashi, Akifumi Takamizawa, Daisuke Akamatsu, Akio Kawasaki, Akiko Nishiyama, Kazumoto Hosaka, Yusuke Hisai, Masato Wada, Hajime Inaba, Takehiko Tanabe, and Masami Yasuda<br/><p>We search for ultralight scalar dark matter candidates that induce oscillations of the fine structure constant, the electron and quark masses, and the quantum chromodynamics energy scale with frequency comparison data between a $^{171}\mathrm{Yb}$ optical lattice clock and a $^{133}\mathrm{Cs}$ foun…</p><br/>[Phys. Rev. Lett. 129, 241301] Published Wed Dec 07, 2022</description>
764 <content:encoded><![CDATA[<p>Author(s): Takumi Kobayashi, Akifumi Takamizawa, Daisuke Akamatsu, Akio Kawasaki, Akiko Nishiyama, Kazumoto Hosaka, Yusuke Hisai, Masato Wada, Hajime Inaba, Takehiko Tanabe, and Masami Yasuda</p><p>We search for ultralight scalar dark matter candidates that induce oscillations of the fine structure constant, the electron and quark masses, and the quantum chromodynamics energy scale with frequency comparison data between a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mmultiscripts><mrow><mi>Yb</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>171</mn></mrow></mmultiscripts></mrow></math> optical lattice clock and a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mmultiscripts><mrow><mi>Cs</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>133</mn></mrow></mmultiscripts></mrow></math> fountain microwave clock that sp…</p><br/><p>[Phys. Rev. Lett. 129, 241301] Published Wed Dec 07, 2022</p>]]></content:encoded>
765 <dc:title>Search for Ultralight Dark Matter from Long-Term Frequency Comparisons of Optical and Microwave Atomic Clocks</dc:title>
766 <dc:creator>Takumi Kobayashi, Akifumi Takamizawa, Daisuke Akamatsu, Akio Kawasaki, Akiko Nishiyama, Kazumoto Hosaka, Yusuke Hisai, Masato Wada, Hajime Inaba, Takehiko Tanabe, and Masami Yasuda</dc:creator>
767 <dc:date>2022-12-07T10:00:00+00:00</dc:date>
768 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
769 <dc:source>Phys. Rev. Lett. 129, 241301 (2022)</dc:source>
770 <dc:type>article</dc:type>
771 <dc:identifier>doi:10.1103/PhysRevLett.129.241301</dc:identifier>
772 <prism:doi>10.1103/PhysRevLett.129.241301</prism:doi>
773 <prism:publicationName>Physical Review Letters</prism:publicationName>
774 <prism:volume>129</prism:volume>
775 <prism:number>24</prism:number>
776 <prism:publicationDate>2022-12-07T10:00:00+00:00</prism:publicationDate>
777 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.241301</prism:url>
778 <prism:startingPage>241301</prism:startingPage>
779 <dc:subject>Gravitation and Astrophysics</dc:subject>
780 <prism:section>Gravitation and Astrophysics</prism:section>
781 </item>
782 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.241101">
783 <title>Irreducible Axion Background</title>
784 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.241101</link>
785 <description>Author(s): Kevin Langhoff, Nadav Joseph Outmezguine, and Nicholas L. Rodd<br/><p>Searches for dark matter decaying into photons constrain its lifetime to be many orders of magnitude larger than the age of the Universe. A corollary statement is that the abundance of any particle that can decay into photons over cosmological timescales is constrained to be much smaller than the co…</p><br/>[Phys. Rev. Lett. 129, 241101] Published Mon Dec 05, 2022</description>
786 <content:encoded><![CDATA[<p>Author(s): Kevin Langhoff, Nadav Joseph Outmezguine, and Nicholas L. Rodd</p><p>Searches for dark matter decaying into photons constrain its lifetime to be many orders of magnitude larger than the age of the Universe. A corollary statement is that the abundance of any particle that can decay into photons over cosmological timescales is constrained to be much smaller than the co…</p><br/><p>[Phys. Rev. Lett. 129, 241101] Published Mon Dec 05, 2022</p>]]></content:encoded>
787 <dc:title>Irreducible Axion Background</dc:title>
788 <dc:creator>Kevin Langhoff, Nadav Joseph Outmezguine, and Nicholas L. Rodd</dc:creator>
789 <dc:date>2022-12-05T10:00:00+00:00</dc:date>
790 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
791 <dc:source>Phys. Rev. Lett. 129, 241101 (2022)</dc:source>
792 <dc:type>article</dc:type>
793 <dc:identifier>doi:10.1103/PhysRevLett.129.241101</dc:identifier>
794 <prism:doi>10.1103/PhysRevLett.129.241101</prism:doi>
795 <prism:publicationName>Physical Review Letters</prism:publicationName>
796 <prism:volume>129</prism:volume>
797 <prism:number>24</prism:number>
798 <prism:publicationDate>2022-12-05T10:00:00+00:00</prism:publicationDate>
799 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.241101</prism:url>
800 <prism:startingPage>241101</prism:startingPage>
801 <dc:subject>Gravitation and Astrophysics</dc:subject>
802 <prism:section>Gravitation and Astrophysics</prism:section>
803 </item>
804 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.231101">
805 <title>Explaining the GeV Antiproton Excess, GeV $γ$-Ray Excess, and $W$-Boson Mass Anomaly in an Inert Two Higgs Doublet Model</title>
806 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.231101</link>
807 <description>Author(s): Cheng-Rui Zhu, Ming-Yang Cui, Zi-Qing Xia, Zhao-Huan Yu, Xiaoyuan Huang, Qiang Yuan, and Yi-Zhong Fan<br/><p>For the newly discovered $W$-boson mass anomaly, one of the simplest dark matter (DM) models that can account for the anomaly without violating other astrophysical and experimental constraints is the inert two Higgs doublet model, in which the DM mass (${m}_{S}$) is found to be within $∼54–74\text{ …</p><br/>[Phys. Rev. Lett. 129, 231101] Published Fri Dec 02, 2022</description>
808 <content:encoded><![CDATA[<p>Author(s): Cheng-Rui Zhu, Ming-Yang Cui, Zi-Qing Xia, Zhao-Huan Yu, Xiaoyuan Huang, Qiang Yuan, and Yi-Zhong Fan</p><p>For the newly discovered <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>W</mi></math>-boson mass anomaly, one of the simplest dark matter (DM) models that can account for the anomaly without violating other astrophysical and experimental constraints is the inert two Higgs doublet model, in which the DM mass (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><msub><mi>m</mi><mi>S</mi></msub></math>) is found to be within <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>∼</mo><mn>54</mn><mi>–</mi><mn>74</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi></mrow></math>. In this mo…</p><br/><p>[Phys. Rev. Lett. 129, 231101] Published Fri Dec 02, 2022</p>]]></content:encoded>
809 <dc:title>Explaining the GeV Antiproton Excess, GeV $γ$-Ray Excess, and $W$-Boson Mass Anomaly in an Inert Two Higgs Doublet Model</dc:title>
810 <dc:creator>Cheng-Rui Zhu, Ming-Yang Cui, Zi-Qing Xia, Zhao-Huan Yu, Xiaoyuan Huang, Qiang Yuan, and Yi-Zhong Fan</dc:creator>
811 <dc:date>2022-12-02T10:00:00+00:00</dc:date>
812 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
813 <dc:source>Phys. Rev. Lett. 129, 231101 (2022)</dc:source>
814 <dc:type>article</dc:type>
815 <dc:identifier>doi:10.1103/PhysRevLett.129.231101</dc:identifier>
816 <prism:doi>10.1103/PhysRevLett.129.231101</prism:doi>
817 <prism:publicationName>Physical Review Letters</prism:publicationName>
818 <prism:volume>129</prism:volume>
819 <prism:number>23</prism:number>
820 <prism:publicationDate>2022-12-02T10:00:00+00:00</prism:publicationDate>
821 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.231101</prism:url>
822 <prism:startingPage>231101</prism:startingPage>
823 <dc:subject>Gravitation and Astrophysics</dc:subject>
824 <prism:section>Gravitation and Astrophysics</prism:section>
825 </item>
826 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.231301">
827 <title>Cosmic Optical Background Excess, Dark Matter, and Line-Intensity Mapping</title>
828 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.231301</link>
829 <description>Author(s): José Luis Bernal, Gabriela Sato-Polito, and Marc Kamionkowski<br/><p>Axions that decay into photons could account for visible light that exceeds what’s expected to come from all known galaxies.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.231301.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 231301] Published Tue Nov 29, 2022</description>
830 <content:encoded><![CDATA[<p>Author(s): José Luis Bernal, Gabriela Sato-Polito, and Marc Kamionkowski</p><p>Axions that decay into photons could account for visible light that exceeds what’s expected to come from all known galaxies.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.231301.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 231301] Published Tue Nov 29, 2022</p>]]></content:encoded>
831 <dc:title>Cosmic Optical Background Excess, Dark Matter, and Line-Intensity Mapping</dc:title>
832 <dc:creator>José Luis Bernal, Gabriela Sato-Polito, and Marc Kamionkowski</dc:creator>
833 <dc:date>2022-11-29T10:00:00+00:00</dc:date>
834 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
835 <dc:source>Phys. Rev. Lett. 129, 231301 (2022)</dc:source>
836 <dc:type>article</dc:type>
837 <dc:identifier>doi:10.1103/PhysRevLett.129.231301</dc:identifier>
838 <prism:doi>10.1103/PhysRevLett.129.231301</prism:doi>
839 <prism:publicationName>Physical Review Letters</prism:publicationName>
840 <prism:volume>129</prism:volume>
841 <prism:number>23</prism:number>
842 <prism:publicationDate>2022-11-29T10:00:00+00:00</prism:publicationDate>
843 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.231301</prism:url>
844 <prism:startingPage>231301</prism:startingPage>
845 <dc:subject>Gravitation and Astrophysics</dc:subject>
846 <prism:section>Gravitation and Astrophysics</prism:section>
847 </item>
848 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.221301">
849 <title>Constraints on Sub-GeV Dark Matter–Electron Scattering from the CDEX-10 Experiment</title>
850 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.221301</link>
851 <description>Author(s): Z. Y. Zhang <em>et al.</em> (CDEX Collaboration)<br/><p>We present improved germanium-based constraints on sub-GeV dark matter via dark matter–electron ($χ\text{−}e$) scattering using the $205.4\text{ }\text{ }\mathrm{kg}·\mathrm{day}$ dataset from the CDEX-10 experiment. Using a novel calculation technique, we attain predicted $χ\text{−}e$ scattering sp…</p><br/>[Phys. Rev. Lett. 129, 221301] Published Mon Nov 21, 2022</description>
852 <content:encoded><![CDATA[<p>Author(s): Z. Y. Zhang <em>et al.</em> (CDEX Collaboration)</p><p>We present improved germanium-based constraints on sub-GeV dark matter via dark matter–electron (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>χ</mi><mtext>−</mtext><mi>e</mi></mrow></math>) scattering using the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>205.4</mn><mtext> </mtext><mtext> </mtext><mi>kg</mi><mo>·</mo><mi>day</mi></mrow></math> dataset from the CDEX-10 experiment. Using a novel calculation technique, we attain predicted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>χ</mi><mtext>−</mtext><mi>e</mi></mrow></math> scattering spectra observable in high-purity germanium detectors.…</p><br/><p>[Phys. Rev. Lett. 129, 221301] Published Mon Nov 21, 2022</p>]]></content:encoded>
853 <dc:title>Constraints on Sub-GeV Dark Matter–Electron Scattering from the CDEX-10 Experiment</dc:title>
854 <dc:creator>Z. Y. Zhang <em>et al.</em> (CDEX Collaboration)</dc:creator>
855 <dc:date>2022-11-21T10:00:00+00:00</dc:date>
856 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
857 <dc:source>Phys. Rev. Lett. 129, 221301 (2022)</dc:source>
858 <dc:type>article</dc:type>
859 <dc:identifier>doi:10.1103/PhysRevLett.129.221301</dc:identifier>
860 <prism:doi>10.1103/PhysRevLett.129.221301</prism:doi>
861 <prism:publicationName>Physical Review Letters</prism:publicationName>
862 <prism:volume>129</prism:volume>
863 <prism:number>22</prism:number>
864 <prism:publicationDate>2022-11-21T10:00:00+00:00</prism:publicationDate>
865 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.221301</prism:url>
866 <prism:startingPage>221301</prism:startingPage>
867 <dc:subject>Gravitation and Astrophysics</dc:subject>
868 <prism:section>Gravitation and Astrophysics</prism:section>
869 </item>
870 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.211102">
871 <title>Comparison of Low-Redshift Lyman-$α$ Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter</title>
872 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.211102</link>
873 <description>Author(s): James S. Bolton, Andrea Caputo, Hongwan Liu, and Matteo Viel<br/><p>Spectra from quasars suggest that intergalactic gas may have been heated by a form of dark matter called dark photons.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.211102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 211102] Published Fri Nov 18, 2022</description>
874 <content:encoded><![CDATA[<p>Author(s): James S. Bolton, Andrea Caputo, Hongwan Liu, and Matteo Viel</p><p>Spectra from quasars suggest that intergalactic gas may have been heated by a form of dark matter called dark photons.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.211102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 211102] Published Fri Nov 18, 2022</p>]]></content:encoded>
875 <dc:title>Comparison of Low-Redshift Lyman-$α$ Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter</dc:title>
876 <dc:creator>James S. Bolton, Andrea Caputo, Hongwan Liu, and Matteo Viel</dc:creator>
877 <dc:date>2022-11-18T10:00:00+00:00</dc:date>
878 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
879 <dc:source>Phys. Rev. Lett. 129, 211102 (2022)</dc:source>
880 <dc:type>article</dc:type>
881 <dc:identifier>doi:10.1103/PhysRevLett.129.211102</dc:identifier>
882 <prism:doi>10.1103/PhysRevLett.129.211102</prism:doi>
883 <prism:publicationName>Physical Review Letters</prism:publicationName>
884 <prism:volume>129</prism:volume>
885 <prism:number>21</prism:number>
886 <prism:publicationDate>2022-11-18T10:00:00+00:00</prism:publicationDate>
887 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.211102</prism:url>
888 <prism:startingPage>211102</prism:startingPage>
889 <dc:subject>Gravitation and Astrophysics</dc:subject>
890 <prism:section>Gravitation and Astrophysics</prism:section>
891 </item>
892 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.211101">
893 <title>Dark Solar Wind</title>
894 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.211101</link>
895 <description>Author(s): Jae Hyeok Chang, David E. Kaplan, Surjeet Rajendran, Harikrishnan Ramani, and Erwin H. Tanin<br/><p>We study the solar emission of light dark sector particles that self-interact strongly enough to self-thermalize. The resulting outflow behaves like a fluid which accelerates under its own thermal pressure to highly relativistic bulk velocities in the solar system. Compared to the ordinary nonintera…</p><br/>[Phys. Rev. Lett. 129, 211101] Published Tue Nov 15, 2022</description>
896 <content:encoded><![CDATA[<p>Author(s): Jae Hyeok Chang, David E. Kaplan, Surjeet Rajendran, Harikrishnan Ramani, and Erwin H. Tanin</p><p>We study the solar emission of light dark sector particles that self-interact strongly enough to self-thermalize. The resulting outflow behaves like a fluid which accelerates under its own thermal pressure to highly relativistic bulk velocities in the solar system. Compared to the ordinary nonintera…</p><br/><p>[Phys. Rev. Lett. 129, 211101] Published Tue Nov 15, 2022</p>]]></content:encoded>
897 <dc:title>Dark Solar Wind</dc:title>
898 <dc:creator>Jae Hyeok Chang, David E. Kaplan, Surjeet Rajendran, Harikrishnan Ramani, and Erwin H. Tanin</dc:creator>
899 <dc:date>2022-11-15T10:00:00+00:00</dc:date>
900 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
901 <dc:source>Phys. Rev. Lett. 129, 211101 (2022)</dc:source>
902 <dc:type>article</dc:type>
903 <dc:identifier>doi:10.1103/PhysRevLett.129.211101</dc:identifier>
904 <prism:doi>10.1103/PhysRevLett.129.211101</prism:doi>
905 <prism:publicationName>Physical Review Letters</prism:publicationName>
906 <prism:volume>129</prism:volume>
907 <prism:number>21</prism:number>
908 <prism:publicationDate>2022-11-15T10:00:00+00:00</prism:publicationDate>
909 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.211101</prism:url>
910 <prism:startingPage>211101</prism:startingPage>
911 <dc:subject>Gravitation and Astrophysics</dc:subject>
912 <prism:section>Gravitation and Astrophysics</prism:section>
913 </item>
914 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.201301">
915 <title>Search for $70\text{ }\text{ }μ\mathrm{eV}$ Dark Photon Dark Matter with a Dielectrically Loaded Multiwavelength Microwave Cavity</title>
916 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.201301</link>
917 <description>Author(s): R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Ottens, Y. Park, G. Rybka, J. Sinnis, and J. Yang<br/><p>Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few $μ\mathrm{eV}$. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally employed half-wavelength cavities suffer from a significant volume reduction at…</p><br/>[Phys. Rev. Lett. 129, 201301] Published Wed Nov 09, 2022</description>
918 <content:encoded><![CDATA[<p>Author(s): R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Ottens, Y. Park, G. Rybka, J. Sinnis, and J. Yang</p><p>Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>μ</mi><mi>eV</mi></mrow></math>. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally employed half-wavelength cavities suffer from a significant volume reduction at higher mas…</p><br/><p>[Phys. Rev. Lett. 129, 201301] Published Wed Nov 09, 2022</p>]]></content:encoded>
919 <dc:title>Search for $70\text{ }\text{ }μ\mathrm{eV}$ Dark Photon Dark Matter with a Dielectrically Loaded Multiwavelength Microwave Cavity</dc:title>
920 <dc:creator>R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Ottens, Y. Park, G. Rybka, J. Sinnis, and J. Yang</dc:creator>
921 <dc:date>2022-11-09T10:00:00+00:00</dc:date>
922 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
923 <dc:source>Phys. Rev. Lett. 129, 201301 (2022)</dc:source>
924 <dc:type>article</dc:type>
925 <dc:identifier>doi:10.1103/PhysRevLett.129.201301</dc:identifier>
926 <prism:doi>10.1103/PhysRevLett.129.201301</prism:doi>
927 <prism:publicationName>Physical Review Letters</prism:publicationName>
928 <prism:volume>129</prism:volume>
929 <prism:number>20</prism:number>
930 <prism:publicationDate>2022-11-09T10:00:00+00:00</prism:publicationDate>
931 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.201301</prism:url>
932 <prism:startingPage>201301</prism:startingPage>
933 <dc:subject>Gravitation and Astrophysics</dc:subject>
934 <prism:section>Gravitation and Astrophysics</prism:section>
935 </item>
936 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.191301">
937 <title>Constraints on Sterile Neutrino Models from Strong Gravitational Lensing, Milky Way Satellites, and the Lyman-$α$ Forest</title>
938 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.191301</link>
939 <description>Author(s): Ioana A. Zelko, Tommaso Treu, Kevork N. Abazajian, Daniel Gilman, Andrew J. Benson, Simon Birrer, Anna M. Nierenberg, and Alexander Kusenko<br/><p>The nature of dark matter is one of the most important unsolved questions in science. Some dark matter candidates do not have sufficient nongravitational interactions to be probed in laboratory or accelerator experiments. It is thus important to develop astrophysical probes which can constrain or le…</p><br/>[Phys. Rev. Lett. 129, 191301] Published Fri Nov 04, 2022</description>
940 <content:encoded><![CDATA[<p>Author(s): Ioana A. Zelko, Tommaso Treu, Kevork N. Abazajian, Daniel Gilman, Andrew J. Benson, Simon Birrer, Anna M. Nierenberg, and Alexander Kusenko</p><p>The nature of dark matter is one of the most important unsolved questions in science. Some dark matter candidates do not have sufficient nongravitational interactions to be probed in laboratory or accelerator experiments. It is thus important to develop astrophysical probes which can constrain or le…</p><br/><p>[Phys. Rev. Lett. 129, 191301] Published Fri Nov 04, 2022</p>]]></content:encoded>
941 <dc:title>Constraints on Sterile Neutrino Models from Strong Gravitational Lensing, Milky Way Satellites, and the Lyman-$α$ Forest</dc:title>
942 <dc:creator>Ioana A. Zelko, Tommaso Treu, Kevork N. Abazajian, Daniel Gilman, Andrew J. Benson, Simon Birrer, Anna M. Nierenberg, and Alexander Kusenko</dc:creator>
943 <dc:date>2022-11-04T10:00:00+00:00</dc:date>
944 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
945 <dc:source>Phys. Rev. Lett. 129, 191301 (2022)</dc:source>
946 <dc:type>article</dc:type>
947 <dc:identifier>doi:10.1103/PhysRevLett.129.191301</dc:identifier>
948 <prism:doi>10.1103/PhysRevLett.129.191301</prism:doi>
949 <prism:publicationName>Physical Review Letters</prism:publicationName>
950 <prism:volume>129</prism:volume>
951 <prism:number>19</prism:number>
952 <prism:publicationDate>2022-11-04T10:00:00+00:00</prism:publicationDate>
953 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.191301</prism:url>
954 <prism:startingPage>191301</prism:startingPage>
955 <dc:subject>Gravitation and Astrophysics</dc:subject>
956 <prism:section>Gravitation and Astrophysics</prism:section>
957 </item>
958 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.191302">
959 <title>Ruling Out Initially Clustered Primordial Black Holes as Dark Matter</title>
960 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.191302</link>
961 <description>Author(s): Valerio De Luca, Gabriele Franciolini, Antonio Riotto, and Hardi Veermäe<br/><p>Combining constraints from microlensing and Lyman-$α$ forest, we provide a simple argument to show that large spatial clustering of stellar-mass primordial black holes at the time of formation, such as the one induced by the presence of large non-Gaussianities, is ruled out. Therefore, it is not pos…</p><br/>[Phys. Rev. Lett. 129, 191302] Published Fri Nov 04, 2022</description>
962 <content:encoded><![CDATA[<p>Author(s): Valerio De Luca, Gabriele Franciolini, Antonio Riotto, and Hardi Veermäe</p><p>Combining constraints from microlensing and Lyman-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>α</mi></math> forest, we provide a simple argument to show that large spatial clustering of stellar-mass primordial black holes at the time of formation, such as the one induced by the presence of large non-Gaussianities, is ruled out. Therefore, it is not possi…</p><br/><p>[Phys. Rev. Lett. 129, 191302] Published Fri Nov 04, 2022</p>]]></content:encoded>
963 <dc:title>Ruling Out Initially Clustered Primordial Black Holes as Dark Matter</dc:title>
964 <dc:creator>Valerio De Luca, Gabriele Franciolini, Antonio Riotto, and Hardi Veermäe</dc:creator>
965 <dc:date>2022-11-04T10:00:00+00:00</dc:date>
966 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
967 <dc:source>Phys. Rev. Lett. 129, 191302 (2022)</dc:source>
968 <dc:type>article</dc:type>
969 <dc:identifier>doi:10.1103/PhysRevLett.129.191302</dc:identifier>
970 <prism:doi>10.1103/PhysRevLett.129.191302</prism:doi>
971 <prism:publicationName>Physical Review Letters</prism:publicationName>
972 <prism:volume>129</prism:volume>
973 <prism:number>19</prism:number>
974 <prism:publicationDate>2022-11-04T10:00:00+00:00</prism:publicationDate>
975 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.191302</prism:url>
976 <prism:startingPage>191302</prism:startingPage>
977 <dc:subject>Gravitation and Astrophysics</dc:subject>
978 <prism:section>Gravitation and Astrophysics</prism:section>
979 </item>
980 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.191103">
981 <title>Kinematic Signatures of Impulsive Supernova Feedback in Dwarf Galaxies</title>
982 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.191103</link>
983 <description>Author(s): Jan D. Burger, Jesús Zavala, Laura V. Sales, Mark Vogelsberger, Federico Marinacci, and Paul Torrey<br/><p>A proposed study of dwarf galaxies could give insight into whether dark matter particles interact with each other.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.191103.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 191103] Published Tue Nov 01, 2022</description>
984 <content:encoded><![CDATA[<p>Author(s): Jan D. Burger, Jesús Zavala, Laura V. Sales, Mark Vogelsberger, Federico Marinacci, and Paul Torrey</p><p>A proposed study of dwarf galaxies could give insight into whether dark matter particles interact with each other.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.191103.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 191103] Published Tue Nov 01, 2022</p>]]></content:encoded>
985 <dc:title>Kinematic Signatures of Impulsive Supernova Feedback in Dwarf Galaxies</dc:title>
986 <dc:creator>Jan D. Burger, Jesús Zavala, Laura V. Sales, Mark Vogelsberger, Federico Marinacci, and Paul Torrey</dc:creator>
987 <dc:date>2022-11-01T10:00:00+00:00</dc:date>
988 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
989 <dc:source>Phys. Rev. Lett. 129, 191103 (2022)</dc:source>
990 <dc:type>article</dc:type>
991 <dc:identifier>doi:10.1103/PhysRevLett.129.191103</dc:identifier>
992 <prism:doi>10.1103/PhysRevLett.129.191103</prism:doi>
993 <prism:publicationName>Physical Review Letters</prism:publicationName>
994 <prism:volume>129</prism:volume>
995 <prism:number>19</prism:number>
996 <prism:publicationDate>2022-11-01T10:00:00+00:00</prism:publicationDate>
997 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.191103</prism:url>
998 <prism:startingPage>191103</prism:startingPage>
999 <dc:subject>Gravitation and Astrophysics</dc:subject>
1000 <prism:section>Gravitation and Astrophysics</prism:section>
1001 </item>
1002 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.191101">
1003 <title>Black Hole Solutions as Topological Thermodynamic Defects</title>
1004 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.191101</link>
1005 <description>Author(s): Shao-Wen Wei, Yu-Xiao Liu, and Robert B. Mann<br/><p>The thermodynamic stability of a black hole is governed by a local topological number.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.191101.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 191101] Published Mon Oct 31, 2022</description>
1006 <content:encoded><![CDATA[<p>Author(s): Shao-Wen Wei, Yu-Xiao Liu, and Robert B. Mann</p><p>The thermodynamic stability of a black hole is governed by a local topological number.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.191101.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 191101] Published Mon Oct 31, 2022</p>]]></content:encoded>
1007 <dc:title>Black Hole Solutions as Topological Thermodynamic Defects</dc:title>
1008 <dc:creator>Shao-Wen Wei, Yu-Xiao Liu, and Robert B. Mann</dc:creator>
1009 <dc:date>2022-10-31T10:00:00+00:00</dc:date>
1010 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1011 <dc:source>Phys. Rev. Lett. 129, 191101 (2022)</dc:source>
1012 <dc:type>article</dc:type>
1013 <dc:identifier>doi:10.1103/PhysRevLett.129.191101</dc:identifier>
1014 <prism:doi>10.1103/PhysRevLett.129.191101</prism:doi>
1015 <prism:publicationName>Physical Review Letters</prism:publicationName>
1016 <prism:volume>129</prism:volume>
1017 <prism:number>19</prism:number>
1018 <prism:publicationDate>2022-10-31T10:00:00+00:00</prism:publicationDate>
1019 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.191101</prism:url>
1020 <prism:startingPage>191101</prism:startingPage>
1021 <dc:subject>Gravitation and Astrophysics</dc:subject>
1022 <prism:section>Gravitation and Astrophysics</prism:section>
1023 </item>
1024 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.191102">
1025 <title>Eccentricity of Long Inspiraling Compact Binaries Sheds Light on Dark Sirens</title>
1026 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.191102</link>
1027 <description>Author(s): Tao Yang, Rong-Gen Cai, Zhoujian Cao, and Hyung Mok Lee<br/><p>The localization and distance inference of gravitational waves are two crucial factors for dark sirens as precise probes of cosmology, astrophysics, and fundamental physics. In this Letter, for the first time we investigate the parameter estimation of gravitational waves emitted by the eccentric com…</p><br/>[Phys. Rev. Lett. 129, 191102] Published Mon Oct 31, 2022</description>
1028 <content:encoded><![CDATA[<p>Author(s): Tao Yang, Rong-Gen Cai, Zhoujian Cao, and Hyung Mok Lee</p><p>The localization and distance inference of gravitational waves are two crucial factors for dark sirens as precise probes of cosmology, astrophysics, and fundamental physics. In this Letter, for the first time we investigate the parameter estimation of gravitational waves emitted by the eccentric com…</p><br/><p>[Phys. Rev. Lett. 129, 191102] Published Mon Oct 31, 2022</p>]]></content:encoded>
1029 <dc:title>Eccentricity of Long Inspiraling Compact Binaries Sheds Light on Dark Sirens</dc:title>
1030 <dc:creator>Tao Yang, Rong-Gen Cai, Zhoujian Cao, and Hyung Mok Lee</dc:creator>
1031 <dc:date>2022-10-31T10:00:00+00:00</dc:date>
1032 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1033 <dc:source>Phys. Rev. Lett. 129, 191102 (2022)</dc:source>
1034 <dc:type>article</dc:type>
1035 <dc:identifier>doi:10.1103/PhysRevLett.129.191102</dc:identifier>
1036 <prism:doi>10.1103/PhysRevLett.129.191102</prism:doi>
1037 <prism:publicationName>Physical Review Letters</prism:publicationName>
1038 <prism:volume>129</prism:volume>
1039 <prism:number>19</prism:number>
1040 <prism:publicationDate>2022-10-31T10:00:00+00:00</prism:publicationDate>
1041 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.191102</prism:url>
1042 <prism:startingPage>191102</prism:startingPage>
1043 <dc:subject>Gravitation and Astrophysics</dc:subject>
1044 <prism:section>Gravitation and Astrophysics</prism:section>
1045 </item>
1046 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.181301">
1047 <title>Quantum Signatures of Black Hole Mass Superpositions</title>
1048 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.181301</link>
1049 <description>Author(s): Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B. Mann<br/><p>We present a new operational framework for studying “superpositions of spacetimes,” which are of fundamental interest in the development of a theory of quantum gravity. Our approach capitalizes on nonlocal correlations in curved spacetime quantum field theory, allowing us to formulate a metric for s…</p><br/>[Phys. Rev. Lett. 129, 181301] Published Fri Oct 28, 2022</description>
1050 <content:encoded><![CDATA[<p>Author(s): Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B. Mann</p><p>We present a new operational framework for studying “superpositions of spacetimes,” which are of fundamental interest in the development of a theory of quantum gravity. Our approach capitalizes on nonlocal correlations in curved spacetime quantum field theory, allowing us to formulate a metric for s…</p><br/><p>[Phys. Rev. Lett. 129, 181301] Published Fri Oct 28, 2022</p>]]></content:encoded>
1051 <dc:title>Quantum Signatures of Black Hole Mass Superpositions</dc:title>
1052 <dc:creator>Joshua Foo, Cemile Senem Arabaci, Magdalena Zych, and Robert B. Mann</dc:creator>
1053 <dc:date>2022-10-28T10:00:00+00:00</dc:date>
1054 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1055 <dc:source>Phys. Rev. Lett. 129, 181301 (2022)</dc:source>
1056 <dc:type>article</dc:type>
1057 <dc:identifier>doi:10.1103/PhysRevLett.129.181301</dc:identifier>
1058 <prism:doi>10.1103/PhysRevLett.129.181301</prism:doi>
1059 <prism:publicationName>Physical Review Letters</prism:publicationName>
1060 <prism:volume>129</prism:volume>
1061 <prism:number>18</prism:number>
1062 <prism:publicationDate>2022-10-28T10:00:00+00:00</prism:publicationDate>
1063 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.181301</prism:url>
1064 <prism:startingPage>181301</prism:startingPage>
1065 <dc:subject>Gravitation and Astrophysics</dc:subject>
1066 <prism:section>Gravitation and Astrophysics</prism:section>
1067 </item>
1068 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.181101">
1069 <title>Merger and Postmerger of Binary Neutron Stars with a Quark-Hadron Crossover Equation of State</title>
1070 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.181101</link>
1071 <description>Author(s): Yong-Jia Huang, Luca Baiotti, Toru Kojo, Kentaro Takami, Hajime Sotani, Hajime Togashi, Tetsuo Hatsuda, Shigehiro Nagataki, and Yi-Zhong Fan<br/><p>Simulations indicate that postmerger gravitational waves from coalescing neutron stars could allow researchers to hear the phase transitions between exotic states of matter.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.181101.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 181101] Published Wed Oct 26, 2022</description>
1072 <content:encoded><![CDATA[<p>Author(s): Yong-Jia Huang, Luca Baiotti, Toru Kojo, Kentaro Takami, Hajime Sotani, Hajime Togashi, Tetsuo Hatsuda, Shigehiro Nagataki, and Yi-Zhong Fan</p><p>Simulations indicate that postmerger gravitational waves from coalescing neutron stars could allow researchers to hear the phase transitions between exotic states of matter.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.181101.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 181101] Published Wed Oct 26, 2022</p>]]></content:encoded>
1073 <dc:title>Merger and Postmerger of Binary Neutron Stars with a Quark-Hadron Crossover Equation of State</dc:title>
1074 <dc:creator>Yong-Jia Huang, Luca Baiotti, Toru Kojo, Kentaro Takami, Hajime Sotani, Hajime Togashi, Tetsuo Hatsuda, Shigehiro Nagataki, and Yi-Zhong Fan</dc:creator>
1075 <dc:date>2022-10-26T10:00:00+00:00</dc:date>
1076 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1077 <dc:source>Phys. Rev. Lett. 129, 181101 (2022)</dc:source>
1078 <dc:type>article</dc:type>
1079 <dc:identifier>doi:10.1103/PhysRevLett.129.181101</dc:identifier>
1080 <prism:doi>10.1103/PhysRevLett.129.181101</prism:doi>
1081 <prism:publicationName>Physical Review Letters</prism:publicationName>
1082 <prism:volume>129</prism:volume>
1083 <prism:number>18</prism:number>
1084 <prism:publicationDate>2022-10-26T10:00:00+00:00</prism:publicationDate>
1085 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.181101</prism:url>
1086 <prism:startingPage>181101</prism:startingPage>
1087 <dc:subject>Gravitation and Astrophysics</dc:subject>
1088 <prism:section>Gravitation and Astrophysics</prism:section>
1089 </item>
1090 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.161101">
1091 <title>Inspirals from the Innermost Stable Circular Orbit of Kerr Black Holes: Exact Solutions and Universal Radial Flow</title>
1092 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.161101</link>
1093 <description>Author(s): Andrew Mummery and Steven Balbus<br/><p>We present exact solutions of test particle orbits spiraling inward from the innermost stable circular orbit (ISCO) of a Kerr black hole. Our results are valid for any allowed value of the angular momentum $a$ parameter of the Kerr metric. These solutions are of considerable physical interest. In pa…</p><br/>[Phys. Rev. Lett. 129, 161101] Published Wed Oct 12, 2022</description>
1094 <content:encoded><![CDATA[<p>Author(s): Andrew Mummery and Steven Balbus</p><p>We present exact solutions of test particle orbits spiraling inward from the innermost stable circular orbit (ISCO) of a Kerr black hole. Our results are valid for any allowed value of the angular momentum <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>a</mi></math> parameter of the Kerr metric. These solutions are of considerable physical interest. In part…</p><br/><p>[Phys. Rev. Lett. 129, 161101] Published Wed Oct 12, 2022</p>]]></content:encoded>
1095 <dc:title>Inspirals from the Innermost Stable Circular Orbit of Kerr Black Holes: Exact Solutions and Universal Radial Flow</dc:title>
1096 <dc:creator>Andrew Mummery and Steven Balbus</dc:creator>
1097 <dc:date>2022-10-12T10:00:00+00:00</dc:date>
1098 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1099 <dc:source>Phys. Rev. Lett. 129, 161101 (2022)</dc:source>
1100 <dc:type>article</dc:type>
1101 <dc:identifier>doi:10.1103/PhysRevLett.129.161101</dc:identifier>
1102 <prism:doi>10.1103/PhysRevLett.129.161101</prism:doi>
1103 <prism:publicationName>Physical Review Letters</prism:publicationName>
1104 <prism:volume>129</prism:volume>
1105 <prism:number>16</prism:number>
1106 <prism:publicationDate>2022-10-12T10:00:00+00:00</prism:publicationDate>
1107 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.161101</prism:url>
1108 <prism:startingPage>161101</prism:startingPage>
1109 <dc:subject>Gravitation and Astrophysics</dc:subject>
1110 <prism:section>Gravitation and Astrophysics</prism:section>
1111 </item>
1112 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.151101">
1113 <title>Singularity Problem for Interacting Massive Vectors</title>
1114 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.151101</link>
1115 <description>Author(s): Zong-Gang Mou and Hong-Yi Zhang<br/><p>Interacting massive spin-1 fields have been widely used in cosmology and particle physics. We obtain a new condition on the validity of the classical limit of these theories related to the nontrivial constraints that exist for vector field components. A violation of this consistency condition causes…</p><br/>[Phys. Rev. Lett. 129, 151101] Published Tue Oct 04, 2022</description>
1116 <content:encoded><![CDATA[<p>Author(s): Zong-Gang Mou and Hong-Yi Zhang</p><p>Interacting massive spin-1 fields have been widely used in cosmology and particle physics. We obtain a new condition on the validity of the classical limit of these theories related to the nontrivial constraints that exist for vector field components. A violation of this consistency condition causes…</p><br/><p>[Phys. Rev. Lett. 129, 151101] Published Tue Oct 04, 2022</p>]]></content:encoded>
1117 <dc:title>Singularity Problem for Interacting Massive Vectors</dc:title>
1118 <dc:creator>Zong-Gang Mou and Hong-Yi Zhang</dc:creator>
1119 <dc:date>2022-10-04T10:00:00+00:00</dc:date>
1120 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1121 <dc:source>Phys. Rev. Lett. 129, 151101 (2022)</dc:source>
1122 <dc:type>article</dc:type>
1123 <dc:identifier>doi:10.1103/PhysRevLett.129.151101</dc:identifier>
1124 <prism:doi>10.1103/PhysRevLett.129.151101</prism:doi>
1125 <prism:publicationName>Physical Review Letters</prism:publicationName>
1126 <prism:volume>129</prism:volume>
1127 <prism:number>15</prism:number>
1128 <prism:publicationDate>2022-10-04T10:00:00+00:00</prism:publicationDate>
1129 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.151101</prism:url>
1130 <prism:startingPage>151101</prism:startingPage>
1131 <dc:subject>Gravitation and Astrophysics</dc:subject>
1132 <prism:section>Gravitation and Astrophysics</prism:section>
1133 </item>
1134 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.151102">
1135 <title>Ghost Instabilities in Self-Interacting Vector Fields: The Problem with Proca Fields</title>
1136 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.151102</link>
1137 <description>Author(s): Katy Clough, Thomas Helfer, Helvi Witek, and Emanuele Berti<br/><p>Massive vector fields feature in several areas of particle physics, e.g., as carriers of weak interactions, dark matter candidates, or an effective description of photons in a plasma. Here, we investigate vector fields with self-interactions by replacing the mass term in the Proca equation with a ge…</p><br/>[Phys. Rev. Lett. 129, 151102] Published Tue Oct 04, 2022</description>
1138 <content:encoded><![CDATA[<p>Author(s): Katy Clough, Thomas Helfer, Helvi Witek, and Emanuele Berti</p><p>Massive vector fields feature in several areas of particle physics, e.g., as carriers of weak interactions, dark matter candidates, or an effective description of photons in a plasma. Here, we investigate vector fields with self-interactions by replacing the mass term in the Proca equation with a ge…</p><br/><p>[Phys. Rev. Lett. 129, 151102] Published Tue Oct 04, 2022</p>]]></content:encoded>
1139 <dc:title>Ghost Instabilities in Self-Interacting Vector Fields: The Problem with Proca Fields</dc:title>
1140 <dc:creator>Katy Clough, Thomas Helfer, Helvi Witek, and Emanuele Berti</dc:creator>
1141 <dc:date>2022-10-04T10:00:00+00:00</dc:date>
1142 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1143 <dc:source>Phys. Rev. Lett. 129, 151102 (2022)</dc:source>
1144 <dc:type>article</dc:type>
1145 <dc:identifier>doi:10.1103/PhysRevLett.129.151102</dc:identifier>
1146 <prism:doi>10.1103/PhysRevLett.129.151102</prism:doi>
1147 <prism:publicationName>Physical Review Letters</prism:publicationName>
1148 <prism:volume>129</prism:volume>
1149 <prism:number>15</prism:number>
1150 <prism:publicationDate>2022-10-04T10:00:00+00:00</prism:publicationDate>
1151 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.151102</prism:url>
1152 <prism:startingPage>151102</prism:startingPage>
1153 <dc:subject>Gravitation and Astrophysics</dc:subject>
1154 <prism:section>Gravitation and Astrophysics</prism:section>
1155 </item>
1156 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.151103">
1157 <title>Intrinsic Pathology of Self-Interacting Vector Fields</title>
1158 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.151103</link>
1159 <description>Author(s): Andrew Coates and Fethi M. Ramazanoğlu<br/><p>We show that self-interacting vector field theories exhibit unphysical behavior even when they are not coupled to any external field. This means any theory featuring such vectors is in danger of being unphysical, an alarming prospect for many proposals in cosmology, gravity, high energy physics, and…</p><br/>[Phys. Rev. Lett. 129, 151103] Published Tue Oct 04, 2022</description>
1160 <content:encoded><![CDATA[<p>Author(s): Andrew Coates and Fethi M. Ramazanoğlu</p><p>We show that self-interacting vector field theories exhibit unphysical behavior even when they are not coupled to any external field. This means any theory featuring such vectors is in danger of being unphysical, an alarming prospect for many proposals in cosmology, gravity, high energy physics, and…</p><br/><p>[Phys. Rev. Lett. 129, 151103] Published Tue Oct 04, 2022</p>]]></content:encoded>
1161 <dc:title>Intrinsic Pathology of Self-Interacting Vector Fields</dc:title>
1162 <dc:creator>Andrew Coates and Fethi M. Ramazanoğlu</dc:creator>
1163 <dc:date>2022-10-04T10:00:00+00:00</dc:date>
1164 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1165 <dc:source>Phys. Rev. Lett. 129, 151103 (2022)</dc:source>
1166 <dc:type>article</dc:type>
1167 <dc:identifier>doi:10.1103/PhysRevLett.129.151103</dc:identifier>
1168 <prism:doi>10.1103/PhysRevLett.129.151103</prism:doi>
1169 <prism:publicationName>Physical Review Letters</prism:publicationName>
1170 <prism:volume>129</prism:volume>
1171 <prism:number>15</prism:number>
1172 <prism:publicationDate>2022-10-04T10:00:00+00:00</prism:publicationDate>
1173 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.151103</prism:url>
1174 <prism:startingPage>151103</prism:startingPage>
1175 <dc:subject>Gravitation and Astrophysics</dc:subject>
1176 <prism:section>Gravitation and Astrophysics</prism:section>
1177 </item>
1178 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.141103">
1179 <title>Vortex String Formation in Black Hole Superradiance of a Dark Photon with the Higgs Mechanism</title>
1180 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.141103</link>
1181 <description>Author(s): William E. East<br/><p>Black hole superradiance, which only relies on gravitational interactions, can provide a powerful probe of the existence of ultralight bosons that are weakly coupled to ordinary matter. However, as a boson cloud grows through superradiance, nonlinear effects from interactions with itself or other fi…</p><br/>[Phys. Rev. Lett. 129, 141103] Published Fri Sep 30, 2022</description>
1182 <content:encoded><![CDATA[<p>Author(s): William E. East</p><p>Black hole superradiance, which only relies on gravitational interactions, can provide a powerful probe of the existence of ultralight bosons that are weakly coupled to ordinary matter. However, as a boson cloud grows through superradiance, nonlinear effects from interactions with itself or other fi…</p><br/><p>[Phys. Rev. Lett. 129, 141103] Published Fri Sep 30, 2022</p>]]></content:encoded>
1183 <dc:title>Vortex String Formation in Black Hole Superradiance of a Dark Photon with the Higgs Mechanism</dc:title>
1184 <dc:creator>William E. East</dc:creator>
1185 <dc:date>2022-09-30T10:00:00+00:00</dc:date>
1186 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1187 <dc:source>Phys. Rev. Lett. 129, 141103 (2022)</dc:source>
1188 <dc:type>article</dc:type>
1189 <dc:identifier>doi:10.1103/PhysRevLett.129.141103</dc:identifier>
1190 <prism:doi>10.1103/PhysRevLett.129.141103</prism:doi>
1191 <prism:publicationName>Physical Review Letters</prism:publicationName>
1192 <prism:volume>129</prism:volume>
1193 <prism:number>14</prism:number>
1194 <prism:publicationDate>2022-09-30T10:00:00+00:00</prism:publicationDate>
1195 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.141103</prism:url>
1196 <prism:startingPage>141103</prism:startingPage>
1197 <dc:subject>Gravitation and Astrophysics</dc:subject>
1198 <prism:section>Gravitation and Astrophysics</prism:section>
1199 </item>
1200 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.141102">
1201 <title>Classical Gravitational Spinning-Spinless Scattering at $\mathcal{O}({G}^{2}{S}^{∞})$</title>
1202 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.141102</link>
1203 <description>Author(s): Rafael Aoude, Kays Haddad, and Andreas Helset<br/><p>Making use of the recently derived, all-spin, opposite-helicity Compton amplitude, we calculate the classical gravitational scattering amplitude for one spinning and one spinless object at $\mathcal{O}({G}^{2})$ and all orders in spin. By construction, this amplitude exhibits the spin structure that…</p><br/>[Phys. Rev. Lett. 129, 141102] Published Thu Sep 29, 2022</description>
1204 <content:encoded><![CDATA[<p>Author(s): Rafael Aoude, Kays Haddad, and Andreas Helset</p><p>Making use of the recently derived, all-spin, opposite-helicity Compton amplitude, we calculate the classical gravitational scattering amplitude for one spinning and one spinless object at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi mathvariant="script">O</mi><mo stretchy="false">(</mo><msup><mi>G</mi><mn>2</mn></msup><mo stretchy="false">)</mo></math> and all orders in spin. By construction, this amplitude exhibits the spin structure that has been conject…</p><br/><p>[Phys. Rev. Lett. 129, 141102] Published Thu Sep 29, 2022</p>]]></content:encoded>
1205 <dc:title>Classical Gravitational Spinning-Spinless Scattering at $\mathcal{O}({G}^{2}{S}^{∞})$</dc:title>
1206 <dc:creator>Rafael Aoude, Kays Haddad, and Andreas Helset</dc:creator>
1207 <dc:date>2022-09-29T10:00:00+00:00</dc:date>
1208 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1209 <dc:source>Phys. Rev. Lett. 129, 141102 (2022)</dc:source>
1210 <dc:type>article</dc:type>
1211 <dc:identifier>doi:10.1103/PhysRevLett.129.141102</dc:identifier>
1212 <prism:doi>10.1103/PhysRevLett.129.141102</prism:doi>
1213 <prism:publicationName>Physical Review Letters</prism:publicationName>
1214 <prism:volume>129</prism:volume>
1215 <prism:number>14</prism:number>
1216 <prism:publicationDate>2022-09-29T10:00:00+00:00</prism:publicationDate>
1217 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.141102</prism:url>
1218 <prism:startingPage>141102</prism:startingPage>
1219 <dc:subject>Gravitation and Astrophysics</dc:subject>
1220 <prism:section>Gravitation and Astrophysics</prism:section>
1221 </item>
1222 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.141101">
1223 <title>Constraining the Symmetron Model with the HUST-2020 Torsion Pendulum Experiment</title>
1224 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.141101</link>
1225 <description>Author(s): Yuan-Ling Zhao, Yu-Jie Tan, Wen-Hao Wu, Jie Luo, and Cheng-Gang Shao<br/><p>The search for dynamically screening the coupling between the scalar field and matter in high-density environment is achievable with the symmetron model. The high-accuracy and short-range gravity experiment is proposed to test the symmetron model. In this Letter, the data of the HUST-2020 torsion pe…</p><br/>[Phys. Rev. Lett. 129, 141101] Published Wed Sep 28, 2022</description>
1226 <content:encoded><![CDATA[<p>Author(s): Yuan-Ling Zhao, Yu-Jie Tan, Wen-Hao Wu, Jie Luo, and Cheng-Gang Shao</p><p>The search for dynamically screening the coupling between the scalar field and matter in high-density environment is achievable with the symmetron model. The high-accuracy and short-range gravity experiment is proposed to test the symmetron model. In this Letter, the data of the HUST-2020 torsion pe…</p><br/><p>[Phys. Rev. Lett. 129, 141101] Published Wed Sep 28, 2022</p>]]></content:encoded>
1227 <dc:title>Constraining the Symmetron Model with the HUST-2020 Torsion Pendulum Experiment</dc:title>
1228 <dc:creator>Yuan-Ling Zhao, Yu-Jie Tan, Wen-Hao Wu, Jie Luo, and Cheng-Gang Shao</dc:creator>
1229 <dc:date>2022-09-28T10:00:00+00:00</dc:date>
1230 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1231 <dc:source>Phys. Rev. Lett. 129, 141101 (2022)</dc:source>
1232 <dc:type>article</dc:type>
1233 <dc:identifier>doi:10.1103/PhysRevLett.129.141101</dc:identifier>
1234 <prism:doi>10.1103/PhysRevLett.129.141101</prism:doi>
1235 <prism:publicationName>Physical Review Letters</prism:publicationName>
1236 <prism:volume>129</prism:volume>
1237 <prism:number>14</prism:number>
1238 <prism:publicationDate>2022-09-28T10:00:00+00:00</prism:publicationDate>
1239 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.141101</prism:url>
1240 <prism:startingPage>141101</prism:startingPage>
1241 <dc:subject>Gravitation and Astrophysics</dc:subject>
1242 <prism:section>Gravitation and Astrophysics</prism:section>
1243 </item>
1244 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.131302">
1245 <title>Searching for Chameleon Dark Energy with Mechanical Systems</title>
1246 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.131302</link>
1247 <description>Author(s): J. Betz, J. Manley, E. M. Wright, D. Grin, and S. Singh<br/><p>A light scalar field framework of dark energy, sometimes referred to as quintessence, introduces a fifth force between normal matter objects. Screening mechanisms, such as the chameleon model, allow the scalar field to be almost massless on cosmological scales while simultaneously evading laboratory…</p><br/>[Phys. Rev. Lett. 129, 131302] Published Fri Sep 23, 2022</description>
1248 <content:encoded><![CDATA[<p>Author(s): J. Betz, J. Manley, E. M. Wright, D. Grin, and S. Singh</p><p>A light scalar field framework of dark energy, sometimes referred to as quintessence, introduces a fifth force between normal matter objects. Screening mechanisms, such as the chameleon model, allow the scalar field to be almost massless on cosmological scales while simultaneously evading laboratory…</p><br/><p>[Phys. Rev. Lett. 129, 131302] Published Fri Sep 23, 2022</p>]]></content:encoded>
1249 <dc:title>Searching for Chameleon Dark Energy with Mechanical Systems</dc:title>
1250 <dc:creator>J. Betz, J. Manley, E. M. Wright, D. Grin, and S. Singh</dc:creator>
1251 <dc:date>2022-09-23T10:00:00+00:00</dc:date>
1252 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1253 <dc:source>Phys. Rev. Lett. 129, 131302 (2022)</dc:source>
1254 <dc:type>article</dc:type>
1255 <dc:identifier>doi:10.1103/PhysRevLett.129.131302</dc:identifier>
1256 <prism:doi>10.1103/PhysRevLett.129.131302</prism:doi>
1257 <prism:publicationName>Physical Review Letters</prism:publicationName>
1258 <prism:volume>129</prism:volume>
1259 <prism:number>13</prism:number>
1260 <prism:publicationDate>2022-09-23T10:00:00+00:00</prism:publicationDate>
1261 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.131302</prism:url>
1262 <prism:startingPage>131302</prism:startingPage>
1263 <dc:subject>Gravitation and Astrophysics</dc:subject>
1264 <prism:section>Gravitation and Astrophysics</prism:section>
1265 </item>
1266 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.131301">
1267 <title>Strongest Atomic Physics Bounds on Noncommutative Quantum Gravity Models</title>
1268 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.131301</link>
1269 <description>Author(s): Kristian Piscicchia, Andrea Addazi, Antonino Marcianò, Massimiliano Bazzi, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Guaraldo, Mihail Antoniu Iliescu, Matthias Laubenstein, Johann Marton, Marco Miliucci, Fabrizio Napolitano, Alessio Porcelli, Alessandro Scordo, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal, and Catalina Curceanu<br/><p>Investigations of possible violations of the Pauli exclusion principle represent critical tests of the microscopic space-time structure and properties. Space-time noncommutativity provides a class of universality for several quantum gravity models. In this context the VIP-2 lead experiment sets the …</p><br/>[Phys. Rev. Lett. 129, 131301] Published Mon Sep 19, 2022</description>
1270 <content:encoded><![CDATA[<p>Author(s): Kristian Piscicchia, Andrea Addazi, Antonino Marcianò, Massimiliano Bazzi, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Guaraldo, Mihail Antoniu Iliescu, Matthias Laubenstein, Johann Marton, Marco Miliucci, Fabrizio Napolitano, Alessio Porcelli, Alessandro Scordo, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal, and Catalina Curceanu</p><p>Investigations of possible violations of the Pauli exclusion principle represent critical tests of the microscopic space-time structure and properties. Space-time noncommutativity provides a class of universality for several quantum gravity models. In this context the VIP-2 lead experiment sets the …</p><br/><p>[Phys. Rev. Lett. 129, 131301] Published Mon Sep 19, 2022</p>]]></content:encoded>
1271 <dc:title>Strongest Atomic Physics Bounds on Noncommutative Quantum Gravity Models</dc:title>
1272 <dc:creator>Kristian Piscicchia, Andrea Addazi, Antonino Marcianò, Massimiliano Bazzi, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Guaraldo, Mihail Antoniu Iliescu, Matthias Laubenstein, Johann Marton, Marco Miliucci, Fabrizio Napolitano, Alessio Porcelli, Alessandro Scordo, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal, and Catalina Curceanu</dc:creator>
1273 <dc:date>2022-09-19T10:00:00+00:00</dc:date>
1274 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1275 <dc:source>Phys. Rev. Lett. 129, 131301 (2022)</dc:source>
1276 <dc:type>article</dc:type>
1277 <dc:identifier>doi:10.1103/PhysRevLett.129.131301</dc:identifier>
1278 <prism:doi>10.1103/PhysRevLett.129.131301</prism:doi>
1279 <prism:publicationName>Physical Review Letters</prism:publicationName>
1280 <prism:volume>129</prism:volume>
1281 <prism:number>13</prism:number>
1282 <prism:publicationDate>2022-09-19T10:00:00+00:00</prism:publicationDate>
1283 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.131301</prism:url>
1284 <prism:startingPage>131301</prism:startingPage>
1285 <dc:subject>Gravitation and Astrophysics</dc:subject>
1286 <prism:section>Gravitation and Astrophysics</prism:section>
1287 </item>
1288 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.121103">
1289 <title>Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm</title>
1290 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.121103</link>
1291 <description>Author(s): Fabian Meylahn, Benno Willke, and Henning Vahlbruch<br/><p>The generation of strongly squeezed vacuum states of light is a key technology for future ground-based gravitational wave detectors (GWDs) to reach sensitivities beyond their quantum noise limit. For some proposed observatory designs, an operating laser wavelength of 1550 nm or around $2\text{ }\tex…</p><br/>[Phys. Rev. Lett. 129, 121103] Published Fri Sep 16, 2022</description>
1292 <content:encoded><![CDATA[<p>Author(s): Fabian Meylahn, Benno Willke, and Henning Vahlbruch</p><p>The generation of strongly squeezed vacuum states of light is a key technology for future ground-based gravitational wave detectors (GWDs) to reach sensitivities beyond their quantum noise limit. For some proposed observatory designs, an operating laser wavelength of 1550 nm or around <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>2</mn><mtext> </mtext><mtext> </mtext><mi>μ</mi><mrow><mi mathvariant="normal">m</mi></mrow></mrow></math> is requi…</p><br/><p>[Phys. Rev. Lett. 129, 121103] Published Fri Sep 16, 2022</p>]]></content:encoded>
1293 <dc:title>Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm</dc:title>
1294 <dc:creator>Fabian Meylahn, Benno Willke, and Henning Vahlbruch</dc:creator>
1295 <dc:date>2022-09-16T10:00:00+00:00</dc:date>
1296 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1297 <dc:source>Phys. Rev. Lett. 129, 121103 (2022)</dc:source>
1298 <dc:type>article</dc:type>
1299 <dc:identifier>doi:10.1103/PhysRevLett.129.121103</dc:identifier>
1300 <prism:doi>10.1103/PhysRevLett.129.121103</prism:doi>
1301 <prism:publicationName>Physical Review Letters</prism:publicationName>
1302 <prism:volume>129</prism:volume>
1303 <prism:number>12</prism:number>
1304 <prism:publicationDate>2022-09-16T10:00:00+00:00</prism:publicationDate>
1305 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.121103</prism:url>
1306 <prism:startingPage>121103</prism:startingPage>
1307 <dc:subject>Gravitation and Astrophysics</dc:subject>
1308 <prism:section>Gravitation and Astrophysics</prism:section>
1309 </item>
1310 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.121104">
1311 <title>Gravitational Waves from Accretion-Induced Descalarization in Massive Scalar-Tensor Theory</title>
1312 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.121104</link>
1313 <description>Author(s): Hao-Jui Kuan, Arthur G. Suvorov, Daniela D. Doneva, and Stoytcho S. Yazadjiev<br/><p>Many classes of extended scalar-tensor theories predict that dynamical instabilities can take place at high energies, leading to the formation of scalarized neutron stars. Depending on the theory parameters, stars in a scalarized state can form a solution-space branch that shares a lot of similariti…</p><br/>[Phys. Rev. Lett. 129, 121104] Published Fri Sep 16, 2022</description>
1314 <content:encoded><![CDATA[<p>Author(s): Hao-Jui Kuan, Arthur G. Suvorov, Daniela D. Doneva, and Stoytcho S. Yazadjiev</p><p>Many classes of extended scalar-tensor theories predict that dynamical instabilities can take place at high energies, leading to the formation of scalarized neutron stars. Depending on the theory parameters, stars in a scalarized state can form a solution-space branch that shares a lot of similariti…</p><br/><p>[Phys. Rev. Lett. 129, 121104] Published Fri Sep 16, 2022</p>]]></content:encoded>
1315 <dc:title>Gravitational Waves from Accretion-Induced Descalarization in Massive Scalar-Tensor Theory</dc:title>
1316 <dc:creator>Hao-Jui Kuan, Arthur G. Suvorov, Daniela D. Doneva, and Stoytcho S. Yazadjiev</dc:creator>
1317 <dc:date>2022-09-16T10:00:00+00:00</dc:date>
1318 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1319 <dc:source>Phys. Rev. Lett. 129, 121104 (2022)</dc:source>
1320 <dc:type>article</dc:type>
1321 <dc:identifier>doi:10.1103/PhysRevLett.129.121104</dc:identifier>
1322 <prism:doi>10.1103/PhysRevLett.129.121104</prism:doi>
1323 <prism:publicationName>Physical Review Letters</prism:publicationName>
1324 <prism:volume>129</prism:volume>
1325 <prism:number>12</prism:number>
1326 <prism:publicationDate>2022-09-16T10:00:00+00:00</prism:publicationDate>
1327 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.121104</prism:url>
1328 <prism:startingPage>121104</prism:startingPage>
1329 <dc:subject>Gravitation and Astrophysics</dc:subject>
1330 <prism:section>Gravitation and Astrophysics</prism:section>
1331 </item>
1332 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.121101">
1333 <title>Gravitational Bremsstrahlung with Tidal Effects in the Post-Minkowskian Expansion</title>
1334 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.121101</link>
1335 <description>Author(s): Stavros Mougiakakos, Massimiliano Maria Riva, and Filippo Vernizzi<br/><p>We compute the mass and current quadrupole tidal corrections to the four-momentum and energy flux radiated during the scattering of two spinless bodies, at leading order in $G$ and at all orders in the velocities, using the effective field theory worldline approach. In particular, we derive the cons…</p><br/>[Phys. Rev. Lett. 129, 121101] Published Wed Sep 14, 2022</description>
1336 <content:encoded><![CDATA[<p>Author(s): Stavros Mougiakakos, Massimiliano Maria Riva, and Filippo Vernizzi</p><p>We compute the mass and current quadrupole tidal corrections to the four-momentum and energy flux radiated during the scattering of two spinless bodies, at leading order in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>G</mi></math> and at all orders in the velocities, using the effective field theory worldline approach. In particular, we derive the conser…</p><br/><p>[Phys. Rev. Lett. 129, 121101] Published Wed Sep 14, 2022</p>]]></content:encoded>
1337 <dc:title>Gravitational Bremsstrahlung with Tidal Effects in the Post-Minkowskian Expansion</dc:title>
1338 <dc:creator>Stavros Mougiakakos, Massimiliano Maria Riva, and Filippo Vernizzi</dc:creator>
1339 <dc:date>2022-09-14T10:00:00+00:00</dc:date>
1340 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1341 <dc:source>Phys. Rev. Lett. 129, 121101 (2022)</dc:source>
1342 <dc:type>article</dc:type>
1343 <dc:identifier>doi:10.1103/PhysRevLett.129.121101</dc:identifier>
1344 <prism:doi>10.1103/PhysRevLett.129.121101</prism:doi>
1345 <prism:publicationName>Physical Review Letters</prism:publicationName>
1346 <prism:volume>129</prism:volume>
1347 <prism:number>12</prism:number>
1348 <prism:publicationDate>2022-09-14T10:00:00+00:00</prism:publicationDate>
1349 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.121101</prism:url>
1350 <prism:startingPage>121101</prism:startingPage>
1351 <dc:subject>Gravitation and Astrophysics</dc:subject>
1352 <prism:section>Gravitation and Astrophysics</prism:section>
1353 </item>
1354 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.121102">
1355 <title>$MICROSCOPE$ Mission: Final Results of the Test of the Equivalence Principle</title>
1356 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.121102</link>
1357 <description>Author(s): Pierre Touboul <em>et al.</em> (MICROSCOPE Collaboration)<br/><p>The <i>MICROSCOPE</i> satellite experiment has tested the equivalence principle with an unprecedented level of precision.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.121102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 121102] Published Wed Sep 14, 2022</description>
1358 <content:encoded><![CDATA[<p>Author(s): Pierre Touboul <em>et al.</em> (MICROSCOPE Collaboration)</p><p>The <i>MICROSCOPE</i> satellite experiment has tested the equivalence principle with an unprecedented level of precision.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.121102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 121102] Published Wed Sep 14, 2022</p>]]></content:encoded>
1359 <dc:title>$MICROSCOPE$ Mission: Final Results of the Test of the Equivalence Principle</dc:title>
1360 <dc:creator>Pierre Touboul <em>et al.</em> (MICROSCOPE Collaboration)</dc:creator>
1361 <dc:date>2022-09-14T10:00:00+00:00</dc:date>
1362 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1363 <dc:source>Phys. Rev. Lett. 129, 121102 (2022)</dc:source>
1364 <dc:type>article</dc:type>
1365 <dc:identifier>doi:10.1103/PhysRevLett.129.121102</dc:identifier>
1366 <prism:doi>10.1103/PhysRevLett.129.121102</prism:doi>
1367 <prism:publicationName>Physical Review Letters</prism:publicationName>
1368 <prism:volume>129</prism:volume>
1369 <prism:number>12</prism:number>
1370 <prism:publicationDate>2022-09-14T10:00:00+00:00</prism:publicationDate>
1371 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.121102</prism:url>
1372 <prism:startingPage>121102</prism:startingPage>
1373 <dc:subject>Gravitation and Astrophysics</dc:subject>
1374 <prism:section>Gravitation and Astrophysics</prism:section>
1375 </item>
1376 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111102">
1377 <title>Analysis of Ringdown Overtones in GW150914</title>
1378 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111102</link>
1379 <description>Author(s): Roberto Cotesta, Gregorio Carullo, Emanuele Berti, and Vitor Cardoso<br/><p>A new analysis questions whether researchers found so-called overtones in the first detected gravitational-wave signal from a black hole merger.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.111102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 111102] Published Fri Sep 09, 2022</description>
1380 <content:encoded><![CDATA[<p>Author(s): Roberto Cotesta, Gregorio Carullo, Emanuele Berti, and Vitor Cardoso</p><p>A new analysis questions whether researchers found so-called overtones in the first detected gravitational-wave signal from a black hole merger.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.111102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 111102] Published Fri Sep 09, 2022</p>]]></content:encoded>
1381 <dc:title>Analysis of Ringdown Overtones in GW150914</dc:title>
1382 <dc:creator>Roberto Cotesta, Gregorio Carullo, Emanuele Berti, and Vitor Cardoso</dc:creator>
1383 <dc:date>2022-09-09T10:00:00+00:00</dc:date>
1384 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1385 <dc:source>Phys. Rev. Lett. 129, 111102 (2022)</dc:source>
1386 <dc:type>article</dc:type>
1387 <dc:identifier>doi:10.1103/PhysRevLett.129.111102</dc:identifier>
1388 <prism:doi>10.1103/PhysRevLett.129.111102</prism:doi>
1389 <prism:publicationName>Physical Review Letters</prism:publicationName>
1390 <prism:volume>129</prism:volume>
1391 <prism:number>11</prism:number>
1392 <prism:publicationDate>2022-09-09T10:00:00+00:00</prism:publicationDate>
1393 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111102</prism:url>
1394 <prism:startingPage>111102</prism:startingPage>
1395 <dc:subject>Gravitation and Astrophysics</dc:subject>
1396 <prism:section>Gravitation and Astrophysics</prism:section>
1397 </item>
1398 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111103">
1399 <title>Dark Matter Constraints from Planck Observations of the Galactic Polarized Synchrotron Emission</title>
1400 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111103</link>
1401 <description>Author(s): Silvia Manconi, Alessandro Cuoco, and Julien Lesgourgues<br/><p>Dark matter (DM) annihilation in our Galaxy may produce a linearly polarized synchrotron signal. We use, for the first time, synchrotron polarization to constrain the DM annihilation cross section by comparing theoretical predictions with the latest polarization maps obtained by the Planck satellite…</p><br/>[Phys. Rev. Lett. 129, 111103] Published Fri Sep 09, 2022</description>
1402 <content:encoded><![CDATA[<p>Author(s): Silvia Manconi, Alessandro Cuoco, and Julien Lesgourgues</p><p>Dark matter (DM) annihilation in our Galaxy may produce a linearly polarized synchrotron signal. We use, for the first time, synchrotron polarization to constrain the DM annihilation cross section by comparing theoretical predictions with the latest polarization maps obtained by the Planck satellite…</p><br/><p>[Phys. Rev. Lett. 129, 111103] Published Fri Sep 09, 2022</p>]]></content:encoded>
1403 <dc:title>Dark Matter Constraints from Planck Observations of the Galactic Polarized Synchrotron Emission</dc:title>
1404 <dc:creator>Silvia Manconi, Alessandro Cuoco, and Julien Lesgourgues</dc:creator>
1405 <dc:date>2022-09-09T10:00:00+00:00</dc:date>
1406 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1407 <dc:source>Phys. Rev. Lett. 129, 111103 (2022)</dc:source>
1408 <dc:type>article</dc:type>
1409 <dc:identifier>doi:10.1103/PhysRevLett.129.111103</dc:identifier>
1410 <prism:doi>10.1103/PhysRevLett.129.111103</prism:doi>
1411 <prism:publicationName>Physical Review Letters</prism:publicationName>
1412 <prism:volume>129</prism:volume>
1413 <prism:number>11</prism:number>
1414 <prism:publicationDate>2022-09-09T10:00:00+00:00</prism:publicationDate>
1415 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111103</prism:url>
1416 <prism:startingPage>111103</prism:startingPage>
1417 <dc:subject>Gravitation and Astrophysics</dc:subject>
1418 <prism:section>Gravitation and Astrophysics</prism:section>
1419 </item>
1420 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111303">
1421 <title>Cavity Optimization for Unruh Effect at Small Accelerations</title>
1422 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111303</link>
1423 <description>Author(s): D. Jaffino Stargen and Kinjalk Lochan<br/><p>One of the primary reasons behind the difficulty in observing the Unruh effect is that for achievable acceleration scales the finite temperature effects are significant only for the low frequency modes of the field. Since the density of field modes falls for small frequencies in free space, the fiel…</p><br/>[Phys. Rev. Lett. 129, 111303] Published Fri Sep 09, 2022</description>
1424 <content:encoded><![CDATA[<p>Author(s): D. Jaffino Stargen and Kinjalk Lochan</p><p>One of the primary reasons behind the difficulty in observing the Unruh effect is that for achievable acceleration scales the finite temperature effects are significant only for the low frequency modes of the field. Since the density of field modes falls for small frequencies in free space, the fiel…</p><br/><p>[Phys. Rev. Lett. 129, 111303] Published Fri Sep 09, 2022</p>]]></content:encoded>
1425 <dc:title>Cavity Optimization for Unruh Effect at Small Accelerations</dc:title>
1426 <dc:creator>D. Jaffino Stargen and Kinjalk Lochan</dc:creator>
1427 <dc:date>2022-09-09T10:00:00+00:00</dc:date>
1428 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1429 <dc:source>Phys. Rev. Lett. 129, 111303 (2022)</dc:source>
1430 <dc:type>article</dc:type>
1431 <dc:identifier>doi:10.1103/PhysRevLett.129.111303</dc:identifier>
1432 <prism:doi>10.1103/PhysRevLett.129.111303</prism:doi>
1433 <prism:publicationName>Physical Review Letters</prism:publicationName>
1434 <prism:volume>129</prism:volume>
1435 <prism:number>11</prism:number>
1436 <prism:publicationDate>2022-09-09T10:00:00+00:00</prism:publicationDate>
1437 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111303</prism:url>
1438 <prism:startingPage>111303</prism:startingPage>
1439 <dc:subject>Gravitation and Astrophysics</dc:subject>
1440 <prism:section>Gravitation and Astrophysics</prism:section>
1441 </item>
1442 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111101">
1443 <title>Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey</title>
1444 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111101</link>
1445 <description>Author(s): H. Abdalla <em>et al.</em> (H.E.S.S. Collaboration)<br/><p>A search for dark matter annihilation signals from a new gamma-ray survey of the Galactic Center sets new exclusion limits on the annihilation cross section.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.111101.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 111101] Published Thu Sep 08, 2022</description>
1446 <content:encoded><![CDATA[<p>Author(s): H. Abdalla <em>et al.</em> (H.E.S.S. Collaboration)</p><p>A search for dark matter annihilation signals from a new gamma-ray survey of the Galactic Center sets new exclusion limits on the annihilation cross section.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.111101.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 111101] Published Thu Sep 08, 2022</p>]]></content:encoded>
1447 <dc:title>Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey</dc:title>
1448 <dc:creator>H. Abdalla <em>et al.</em> (H.E.S.S. Collaboration)</dc:creator>
1449 <dc:date>2022-09-08T10:00:00+00:00</dc:date>
1450 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1451 <dc:source>Phys. Rev. Lett. 129, 111101 (2022)</dc:source>
1452 <dc:type>article</dc:type>
1453 <dc:identifier>doi:10.1103/PhysRevLett.129.111101</dc:identifier>
1454 <prism:doi>10.1103/PhysRevLett.129.111101</prism:doi>
1455 <prism:publicationName>Physical Review Letters</prism:publicationName>
1456 <prism:volume>129</prism:volume>
1457 <prism:number>11</prism:number>
1458 <prism:publicationDate>2022-09-08T10:00:00+00:00</prism:publicationDate>
1459 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111101</prism:url>
1460 <prism:startingPage>111101</prism:startingPage>
1461 <dc:subject>Gravitation and Astrophysics</dc:subject>
1462 <prism:section>Gravitation and Astrophysics</prism:section>
1463 </item>
1464 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111301">
1465 <title>Probing Leptogenesis with the Cosmological Collider</title>
1466 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111301</link>
1467 <description>Author(s): Yanou Cui and Zhong-Zhi Xianyu<br/><p>Leptogenesis is generally challenging to directly test due to the very high energy scales involved. In this Letter, we propose a new probe for leptogenesis with cosmological collider physics. With the example of a cosmological Higgs collider, we demonstrate that during inflation leptogenesis models …</p><br/>[Phys. Rev. Lett. 129, 111301] Published Thu Sep 08, 2022</description>
1468 <content:encoded><![CDATA[<p>Author(s): Yanou Cui and Zhong-Zhi Xianyu</p><p>Leptogenesis is generally challenging to directly test due to the very high energy scales involved. In this Letter, we propose a new probe for leptogenesis with cosmological collider physics. With the example of a cosmological Higgs collider, we demonstrate that during inflation leptogenesis models …</p><br/><p>[Phys. Rev. Lett. 129, 111301] Published Thu Sep 08, 2022</p>]]></content:encoded>
1469 <dc:title>Probing Leptogenesis with the Cosmological Collider</dc:title>
1470 <dc:creator>Yanou Cui and Zhong-Zhi Xianyu</dc:creator>
1471 <dc:date>2022-09-08T10:00:00+00:00</dc:date>
1472 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1473 <dc:source>Phys. Rev. Lett. 129, 111301 (2022)</dc:source>
1474 <dc:type>article</dc:type>
1475 <dc:identifier>doi:10.1103/PhysRevLett.129.111301</dc:identifier>
1476 <prism:doi>10.1103/PhysRevLett.129.111301</prism:doi>
1477 <prism:publicationName>Physical Review Letters</prism:publicationName>
1478 <prism:volume>129</prism:volume>
1479 <prism:number>11</prism:number>
1480 <prism:publicationDate>2022-09-08T10:00:00+00:00</prism:publicationDate>
1481 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111301</prism:url>
1482 <prism:startingPage>111301</prism:startingPage>
1483 <dc:subject>Gravitation and Astrophysics</dc:subject>
1484 <prism:section>Gravitation and Astrophysics</prism:section>
1485 </item>
1486 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.111302">
1487 <title>Dynamics and Entanglement in Quantum and Quantum-Classical Systems: Lessons for Gravity</title>
1488 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.111302</link>
1489 <description>Author(s): Viqar Husain, Irfan Javed, and Suprit Singh<br/><p>Motivated by quantum gravity, semiclassical theory, and quantum theory on curved spacetimes, we study the system of an oscillator coupled to two spin-$1/2$ particles. This model provides a prototype for comparing three types of dynamics: the full quantum theory, the classical oscillator with spin ba…</p><br/>[Phys. Rev. Lett. 129, 111302] Published Thu Sep 08, 2022</description>
1490 <content:encoded><![CDATA[<p>Author(s): Viqar Husain, Irfan Javed, and Suprit Singh</p><p>Motivated by quantum gravity, semiclassical theory, and quantum theory on curved spacetimes, we study the system of an oscillator coupled to two spin-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math> particles. This model provides a prototype for comparing three types of dynamics: the full quantum theory, the classical oscillator with spin back…</p><br/><p>[Phys. Rev. Lett. 129, 111302] Published Thu Sep 08, 2022</p>]]></content:encoded>
1491 <dc:title>Dynamics and Entanglement in Quantum and Quantum-Classical Systems: Lessons for Gravity</dc:title>
1492 <dc:creator>Viqar Husain, Irfan Javed, and Suprit Singh</dc:creator>
1493 <dc:date>2022-09-08T10:00:00+00:00</dc:date>
1494 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1495 <dc:source>Phys. Rev. Lett. 129, 111302 (2022)</dc:source>
1496 <dc:type>article</dc:type>
1497 <dc:identifier>doi:10.1103/PhysRevLett.129.111302</dc:identifier>
1498 <prism:doi>10.1103/PhysRevLett.129.111302</prism:doi>
1499 <prism:publicationName>Physical Review Letters</prism:publicationName>
1500 <prism:volume>129</prism:volume>
1501 <prism:number>11</prism:number>
1502 <prism:publicationDate>2022-09-08T10:00:00+00:00</prism:publicationDate>
1503 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.111302</prism:url>
1504 <prism:startingPage>111302</prism:startingPage>
1505 <dc:subject>Gravitation and Astrophysics</dc:subject>
1506 <prism:section>Gravitation and Astrophysics</prism:section>
1507 </item>
1508 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.101102">
1509 <title>Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station</title>
1510 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.101102</link>
1511 <description>Author(s): O. Adriani <em>et al.</em> (CALET Collaboration)<br/><p>Precise measurements of the cosmic-ray proton spectrum by CALET on the International Space Station confirm two prominent spectral features.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.101102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 101102] Published Thu Sep 01, 2022</description>
1512 <content:encoded><![CDATA[<p>Author(s): O. Adriani <em>et al.</em> (CALET Collaboration)</p><p>Precise measurements of the cosmic-ray proton spectrum by CALET on the International Space Station confirm two prominent spectral features.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.101102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 101102] Published Thu Sep 01, 2022</p>]]></content:encoded>
1513 <dc:title>Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station</dc:title>
1514 <dc:creator>O. Adriani <em>et al.</em> (CALET Collaboration)</dc:creator>
1515 <dc:date>2022-09-01T10:00:00+00:00</dc:date>
1516 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1517 <dc:source>Phys. Rev. Lett. 129, 101102 (2022)</dc:source>
1518 <dc:type>article</dc:type>
1519 <dc:identifier>doi:10.1103/PhysRevLett.129.101102</dc:identifier>
1520 <prism:doi>10.1103/PhysRevLett.129.101102</prism:doi>
1521 <prism:publicationName>Physical Review Letters</prism:publicationName>
1522 <prism:volume>129</prism:volume>
1523 <prism:number>10</prism:number>
1524 <prism:publicationDate>2022-09-01T10:00:00+00:00</prism:publicationDate>
1525 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.101102</prism:url>
1526 <prism:startingPage>101102</prism:startingPage>
1527 <dc:subject>Gravitation and Astrophysics</dc:subject>
1528 <prism:section>Gravitation and Astrophysics</prism:section>
1529 </item>
1530 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.101101">
1531 <title>First Indirect Detection Constraints on Axions in the Solar Basin</title>
1532 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.101101</link>
1533 <description>Author(s): William DeRocco, Shalma Wegsman, Brian Grefenstette, Junwu Huang, and Ken Van Tilburg<br/><p>Axions with masses of order keV can be produced in great abundance within the Solar core. The majority of Sun-produced axions escape to infinity, but a small fraction of the flux is produced with speeds below the escape velocity. Over time, this process populates a basin of slow-moving axions trappe…</p><br/>[Phys. Rev. Lett. 129, 101101] Published Tue Aug 30, 2022</description>
1534 <content:encoded><![CDATA[<p>Author(s): William DeRocco, Shalma Wegsman, Brian Grefenstette, Junwu Huang, and Ken Van Tilburg</p><p>Axions with masses of order keV can be produced in great abundance within the Solar core. The majority of Sun-produced axions escape to infinity, but a small fraction of the flux is produced with speeds below the escape velocity. Over time, this process populates a basin of slow-moving axions trappe…</p><br/><p>[Phys. Rev. Lett. 129, 101101] Published Tue Aug 30, 2022</p>]]></content:encoded>
1535 <dc:title>First Indirect Detection Constraints on Axions in the Solar Basin</dc:title>
1536 <dc:creator>William DeRocco, Shalma Wegsman, Brian Grefenstette, Junwu Huang, and Ken Van Tilburg</dc:creator>
1537 <dc:date>2022-08-30T10:00:00+00:00</dc:date>
1538 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1539 <dc:source>Phys. Rev. Lett. 129, 101101 (2022)</dc:source>
1540 <dc:type>article</dc:type>
1541 <dc:identifier>doi:10.1103/PhysRevLett.129.101101</dc:identifier>
1542 <prism:doi>10.1103/PhysRevLett.129.101101</prism:doi>
1543 <prism:publicationName>Physical Review Letters</prism:publicationName>
1544 <prism:volume>129</prism:volume>
1545 <prism:number>10</prism:number>
1546 <prism:publicationDate>2022-08-30T10:00:00+00:00</prism:publicationDate>
1547 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.101101</prism:url>
1548 <prism:startingPage>101101</prism:startingPage>
1549 <dc:subject>Gravitation and Astrophysics</dc:subject>
1550 <prism:section>Gravitation and Astrophysics</prism:section>
1551 </item>
1552 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.091301">
1553 <title>Signatures of Primordial Gravitational Waves on the Large-Scale Structure of the Universe</title>
1554 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.091301</link>
1555 <description>Author(s): Pritha Bari, Angelo Ricciardone, Nicola Bartolo, Daniele Bertacca, and Sabino Matarrese<br/><p>We study the generation and evolution of second-order energy-density perturbations arising from primordial gravitational waves. Such “tensor-induced scalar modes” approximately evolve as standard linear matter perturbations and may leave observable signatures in the large-scale structure of the Univ…</p><br/>[Phys. Rev. Lett. 129, 091301] Published Fri Aug 26, 2022</description>
1556 <content:encoded><![CDATA[<p>Author(s): Pritha Bari, Angelo Ricciardone, Nicola Bartolo, Daniele Bertacca, and Sabino Matarrese</p><p>We study the generation and evolution of second-order energy-density perturbations arising from primordial gravitational waves. Such “tensor-induced scalar modes” approximately evolve as standard linear matter perturbations and may leave observable signatures in the large-scale structure of the Univ…</p><br/><p>[Phys. Rev. Lett. 129, 091301] Published Fri Aug 26, 2022</p>]]></content:encoded>
1557 <dc:title>Signatures of Primordial Gravitational Waves on the Large-Scale Structure of the Universe</dc:title>
1558 <dc:creator>Pritha Bari, Angelo Ricciardone, Nicola Bartolo, Daniele Bertacca, and Sabino Matarrese</dc:creator>
1559 <dc:date>2022-08-26T10:00:00+00:00</dc:date>
1560 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1561 <dc:source>Phys. Rev. Lett. 129, 091301 (2022)</dc:source>
1562 <dc:type>article</dc:type>
1563 <dc:identifier>doi:10.1103/PhysRevLett.129.091301</dc:identifier>
1564 <prism:doi>10.1103/PhysRevLett.129.091301</prism:doi>
1565 <prism:publicationName>Physical Review Letters</prism:publicationName>
1566 <prism:volume>129</prism:volume>
1567 <prism:number>9</prism:number>
1568 <prism:publicationDate>2022-08-26T10:00:00+00:00</prism:publicationDate>
1569 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.091301</prism:url>
1570 <prism:startingPage>091301</prism:startingPage>
1571 <dc:subject>Gravitation and Astrophysics</dc:subject>
1572 <prism:section>Gravitation and Astrophysics</prism:section>
1573 </item>
1574 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.081102">
1575 <title>Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State</title>
1576 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.081102</link>
1577 <description>Author(s): Geraint Pratten, Patricia Schmidt, and Natalie Williams<br/><p>Gravitational waves (GWs) from inspiraling neutron stars afford us a unique opportunity to infer the as-of-yet unknown equation of state of cold hadronic matter at supranuclear densities. During the inspiral, the dominant matter effects arise due to the star’s response to their companion’s tidal fie…</p><br/>[Phys. Rev. Lett. 129, 081102] Published Thu Aug 18, 2022</description>
1578 <content:encoded><![CDATA[<p>Author(s): Geraint Pratten, Patricia Schmidt, and Natalie Williams</p><p>Gravitational waves (GWs) from inspiraling neutron stars afford us a unique opportunity to infer the as-of-yet unknown equation of state of cold hadronic matter at supranuclear densities. During the inspiral, the dominant matter effects arise due to the star’s response to their companion’s tidal fie…</p><br/><p>[Phys. Rev. Lett. 129, 081102] Published Thu Aug 18, 2022</p>]]></content:encoded>
1579 <dc:title>Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State</dc:title>
1580 <dc:creator>Geraint Pratten, Patricia Schmidt, and Natalie Williams</dc:creator>
1581 <dc:date>2022-08-18T10:00:00+00:00</dc:date>
1582 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1583 <dc:source>Phys. Rev. Lett. 129, 081102 (2022)</dc:source>
1584 <dc:type>article</dc:type>
1585 <dc:identifier>doi:10.1103/PhysRevLett.129.081102</dc:identifier>
1586 <prism:doi>10.1103/PhysRevLett.129.081102</prism:doi>
1587 <prism:publicationName>Physical Review Letters</prism:publicationName>
1588 <prism:volume>129</prism:volume>
1589 <prism:number>8</prism:number>
1590 <prism:publicationDate>2022-08-18T10:00:00+00:00</prism:publicationDate>
1591 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.081102</prism:url>
1592 <prism:startingPage>081102</prism:startingPage>
1593 <dc:subject>Gravitation and Astrophysics</dc:subject>
1594 <prism:section>Gravitation and Astrophysics</prism:section>
1595 </item>
1596 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.071102">
1597 <title>Seismic Background Limitation of Lunar Gravitational-Wave Detectors</title>
1598 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.071102</link>
1599 <description>Author(s): Jan Harms<br/><p>New concepts were recently proposed for gravitational-wave (GW) detectors on the Moon. These include laser-interferometric detectors, proposed as free-range or optical-fiber interferometers, and inertial acceleration sensors. Some of them exploit the response of the Moon to GWs, others follow the de…</p><br/>[Phys. Rev. Lett. 129, 071102] Published Fri Aug 12, 2022</description>
1600 <content:encoded><![CDATA[<p>Author(s): Jan Harms</p><p>New concepts were recently proposed for gravitational-wave (GW) detectors on the Moon. These include laser-interferometric detectors, proposed as free-range or optical-fiber interferometers, and inertial acceleration sensors. Some of them exploit the response of the Moon to GWs, others follow the de…</p><br/><p>[Phys. Rev. Lett. 129, 071102] Published Fri Aug 12, 2022</p>]]></content:encoded>
1601 <dc:title>Seismic Background Limitation of Lunar Gravitational-Wave Detectors</dc:title>
1602 <dc:creator>Jan Harms</dc:creator>
1603 <dc:date>2022-08-12T10:00:00+00:00</dc:date>
1604 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1605 <dc:source>Phys. Rev. Lett. 129, 071102 (2022)</dc:source>
1606 <dc:type>article</dc:type>
1607 <dc:identifier>doi:10.1103/PhysRevLett.129.071102</dc:identifier>
1608 <prism:doi>10.1103/PhysRevLett.129.071102</prism:doi>
1609 <prism:publicationName>Physical Review Letters</prism:publicationName>
1610 <prism:volume>129</prism:volume>
1611 <prism:number>7</prism:number>
1612 <prism:publicationDate>2022-08-12T10:00:00+00:00</prism:publicationDate>
1613 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.071102</prism:url>
1614 <prism:startingPage>071102</prism:startingPage>
1615 <dc:subject>Gravitation and Astrophysics</dc:subject>
1616 <prism:section>Gravitation and Astrophysics</prism:section>
1617 </item>
1618 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.071101">
1619 <title>Evidence for PeV Proton Acceleration from Fermi-LAT Observations of SNR $\mathrm{G}106.3+2.7$</title>
1620 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.071101</link>
1621 <description>Author(s): Ke Fang, Matthew Kerr, Roger Blandford, Henrike Fleischhack, and Eric Charles<br/><p>An analysis of 12 years of gamma-ray observations has allowed researchers to pinpoint a Galactic source of high-energy cosmic rays.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.071101.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 071101] Published Wed Aug 10, 2022</description>
1622 <content:encoded><![CDATA[<p>Author(s): Ke Fang, Matthew Kerr, Roger Blandford, Henrike Fleischhack, and Eric Charles</p><p>An analysis of 12 years of gamma-ray observations has allowed researchers to pinpoint a Galactic source of high-energy cosmic rays.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.071101.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 071101] Published Wed Aug 10, 2022</p>]]></content:encoded>
1623 <dc:title>Evidence for PeV Proton Acceleration from Fermi-LAT Observations of SNR $\mathrm{G}106.3+2.7$</dc:title>
1624 <dc:creator>Ke Fang, Matthew Kerr, Roger Blandford, Henrike Fleischhack, and Eric Charles</dc:creator>
1625 <dc:date>2022-08-10T10:00:00+00:00</dc:date>
1626 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1627 <dc:source>Phys. Rev. Lett. 129, 071101 (2022)</dc:source>
1628 <dc:type>article</dc:type>
1629 <dc:identifier>doi:10.1103/PhysRevLett.129.071101</dc:identifier>
1630 <prism:doi>10.1103/PhysRevLett.129.071101</prism:doi>
1631 <prism:publicationName>Physical Review Letters</prism:publicationName>
1632 <prism:volume>129</prism:volume>
1633 <prism:number>7</prism:number>
1634 <prism:publicationDate>2022-08-10T10:00:00+00:00</prism:publicationDate>
1635 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.071101</prism:url>
1636 <prism:startingPage>071101</prism:startingPage>
1637 <dc:subject>Gravitation and Astrophysics</dc:subject>
1638 <prism:section>Gravitation and Astrophysics</prism:section>
1639 </item>
1640 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061103">
1641 <title>Neutron–Mirror-Neutron Oscillation and Neutron Star Cooling</title>
1642 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061103</link>
1643 <description>Author(s): Itzhak Goldman, Rabindra N. Mohapatra, Shmuel Nussinov, and Yongchao Zhang<br/><p>It was pointed out in a recent paper that the observed cooling rate of old, cold neutron stars (NS) can provide an upper limit on the transition rate of neutron to mirror neutron ($n−{n}^{′}$). This limit is so stringent that it would preclude any discovery of $n→{n}^{′}$ oscillation in the current …</p><br/>[Phys. Rev. Lett. 129, 061103] Published Fri Aug 05, 2022</description>
1644 <content:encoded><![CDATA[<p>Author(s): Itzhak Goldman, Rabindra N. Mohapatra, Shmuel Nussinov, and Yongchao Zhang</p><p>It was pointed out in a recent paper that the observed cooling rate of old, cold neutron stars (NS) can provide an upper limit on the transition rate of neutron to mirror neutron (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>n</mi><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math>). This limit is so stringent that it would preclude any discovery of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>n</mi><mo stretchy="false">→</mo><msup><mi>n</mi><mo>′</mo></msup></math> oscillation in the current round of terre…</p><br/><p>[Phys. Rev. Lett. 129, 061103] Published Fri Aug 05, 2022</p>]]></content:encoded>
1645 <dc:title>Neutron–Mirror-Neutron Oscillation and Neutron Star Cooling</dc:title>
1646 <dc:creator>Itzhak Goldman, Rabindra N. Mohapatra, Shmuel Nussinov, and Yongchao Zhang</dc:creator>
1647 <dc:date>2022-08-05T10:00:00+00:00</dc:date>
1648 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1649 <dc:source>Phys. Rev. Lett. 129, 061103 (2022)</dc:source>
1650 <dc:type>article</dc:type>
1651 <dc:identifier>doi:10.1103/PhysRevLett.129.061103</dc:identifier>
1652 <prism:doi>10.1103/PhysRevLett.129.061103</prism:doi>
1653 <prism:publicationName>Physical Review Letters</prism:publicationName>
1654 <prism:volume>129</prism:volume>
1655 <prism:number>6</prism:number>
1656 <prism:publicationDate>2022-08-05T10:00:00+00:00</prism:publicationDate>
1657 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061103</prism:url>
1658 <prism:startingPage>061103</prism:startingPage>
1659 <dc:subject>Gravitation and Astrophysics</dc:subject>
1660 <prism:section>Gravitation and Astrophysics</prism:section>
1661 </item>
1662 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061104">
1663 <title>Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run</title>
1664 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061104</link>
1665 <description>Author(s): R. Abbott <em>et al.</em> (LIGO Scientific Collaboration and Virgo Collaboration)<br/><p>We report on a search for compact binary coalescences where at least one binary component has a mass between $0.2\text{ }\text{ }{M}_{⊙}$ and $1.0\text{ }\text{ }{M}_{⊙}$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previ…</p><br/>[Phys. Rev. Lett. 129, 061104] Published Fri Aug 05, 2022</description>
1666 <content:encoded><![CDATA[<p>Author(s): R. Abbott <em>et al.</em> (LIGO Scientific Collaboration and Virgo Collaboration)</p><p>We report on a search for compact binary coalescences where at least one binary component has a mass between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>0.2</mn><mtext> </mtext><mtext> </mtext><msub><mrow><mi>M</mi></mrow><mrow><mo stretchy="false">⊙</mo></mrow></msub></mrow></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>1.0</mn><mtext> </mtext><mtext> </mtext><msub><mrow><mi>M</mi></mrow><mrow><mo stretchy="false">⊙</mo></mrow></msub></mrow></math> in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include …</p><br/><p>[Phys. Rev. Lett. 129, 061104] Published Fri Aug 05, 2022</p>]]></content:encoded>
1667 <dc:title>Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run</dc:title>
1668 <dc:creator>R. Abbott <em>et al.</em> (LIGO Scientific Collaboration and Virgo Collaboration)</dc:creator>
1669 <dc:date>2022-08-05T10:00:00+00:00</dc:date>
1670 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1671 <dc:source>Phys. Rev. Lett. 129, 061104 (2022)</dc:source>
1672 <dc:type>article</dc:type>
1673 <dc:identifier>doi:10.1103/PhysRevLett.129.061104</dc:identifier>
1674 <prism:doi>10.1103/PhysRevLett.129.061104</prism:doi>
1675 <prism:publicationName>Physical Review Letters</prism:publicationName>
1676 <prism:volume>129</prism:volume>
1677 <prism:number>6</prism:number>
1678 <prism:publicationDate>2022-08-05T10:00:00+00:00</prism:publicationDate>
1679 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061104</prism:url>
1680 <prism:startingPage>061104</prism:startingPage>
1681 <dc:subject>Gravitation and Astrophysics</dc:subject>
1682 <prism:section>Gravitation and Astrophysics</prism:section>
1683 </item>
1684 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061102">
1685 <title>Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries</title>
1686 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061102</link>
1687 <description>Author(s): Jose María Ezquiaga and Daniel E. Holz<br/><p>We explore the use of the mass spectrum of neutron stars and black holes in gravitational-wave compact binary sources as a cosmological probe. These standard siren sources provide direct measurements of luminosity distance. In addition, features in the mass distribution, such as mass gaps or peaks, …</p><br/>[Phys. Rev. Lett. 129, 061102] Published Wed Aug 03, 2022</description>
1688 <content:encoded><![CDATA[<p>Author(s): Jose María Ezquiaga and Daniel E. Holz</p><p>We explore the use of the mass spectrum of neutron stars and black holes in gravitational-wave compact binary sources as a cosmological probe. These standard siren sources provide direct measurements of luminosity distance. In addition, features in the mass distribution, such as mass gaps or peaks, …</p><br/><p>[Phys. Rev. Lett. 129, 061102] Published Wed Aug 03, 2022</p>]]></content:encoded>
1689 <dc:title>Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries</dc:title>
1690 <dc:creator>Jose María Ezquiaga and Daniel E. Holz</dc:creator>
1691 <dc:date>2022-08-03T10:00:00+00:00</dc:date>
1692 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1693 <dc:source>Phys. Rev. Lett. 129, 061102 (2022)</dc:source>
1694 <dc:type>article</dc:type>
1695 <dc:identifier>doi:10.1103/PhysRevLett.129.061102</dc:identifier>
1696 <prism:doi>10.1103/PhysRevLett.129.061102</prism:doi>
1697 <prism:publicationName>Physical Review Letters</prism:publicationName>
1698 <prism:volume>129</prism:volume>
1699 <prism:number>6</prism:number>
1700 <prism:publicationDate>2022-08-03T10:00:00+00:00</prism:publicationDate>
1701 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061102</prism:url>
1702 <prism:startingPage>061102</prism:startingPage>
1703 <dc:subject>Gravitation and Astrophysics</dc:subject>
1704 <prism:section>Gravitation and Astrophysics</prism:section>
1705 </item>
1706 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061302">
1707 <title>Vortices in Black Holes</title>
1708 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061302</link>
1709 <description>Author(s): Gia Dvali, Florian Kühnel, and Michael Zantedeschi<br/><p>We argue that black holes admit vortex structure. This is based both on a graviton-condensate description of a black hole as well as on a correspondence between black holes and generic objects with maximal entropy compatible with unitarity, so-called saturons. We show that due to vorticity, a $Q$-ba…</p><br/>[Phys. Rev. Lett. 129, 061302] Published Wed Aug 03, 2022</description>
1710 <content:encoded><![CDATA[<p>Author(s): Gia Dvali, Florian Kühnel, and Michael Zantedeschi</p><p>We argue that black holes admit vortex structure. This is based both on a graviton-condensate description of a black hole as well as on a correspondence between black holes and generic objects with maximal entropy compatible with unitarity, so-called saturons. We show that due to vorticity, a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mi>Q</mi></math>-ball…</p><br/><p>[Phys. Rev. Lett. 129, 061302] Published Wed Aug 03, 2022</p>]]></content:encoded>
1711 <dc:title>Vortices in Black Holes</dc:title>
1712 <dc:creator>Gia Dvali, Florian Kühnel, and Michael Zantedeschi</dc:creator>
1713 <dc:date>2022-08-03T10:00:00+00:00</dc:date>
1714 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1715 <dc:source>Phys. Rev. Lett. 129, 061302 (2022)</dc:source>
1716 <dc:type>article</dc:type>
1717 <dc:identifier>doi:10.1103/PhysRevLett.129.061302</dc:identifier>
1718 <prism:doi>10.1103/PhysRevLett.129.061302</prism:doi>
1719 <prism:publicationName>Physical Review Letters</prism:publicationName>
1720 <prism:volume>129</prism:volume>
1721 <prism:number>6</prism:number>
1722 <prism:publicationDate>2022-08-03T10:00:00+00:00</prism:publicationDate>
1723 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061302</prism:url>
1724 <prism:startingPage>061302</prism:startingPage>
1725 <dc:subject>Gravitation and Astrophysics</dc:subject>
1726 <prism:section>Gravitation and Astrophysics</prism:section>
1727 </item>
1728 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061101">
1729 <title>Precession Caused by Gravitational Waves</title>
1730 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061101</link>
1731 <description>Author(s): Ali Seraj and Blagoje Oblak<br/><p>We show that gravitational waves cause freely falling gyroscopes to precess relative to fixed distant stars, extending the stationary Lense-Thirring effect. The precession rate decays as the square of the inverse distance to the source and is proportional to a suitable Noether current for dual asymp…</p><br/>[Phys. Rev. Lett. 129, 061101] Published Tue Aug 02, 2022</description>
1732 <content:encoded><![CDATA[<p>Author(s): Ali Seraj and Blagoje Oblak</p><p>We show that gravitational waves cause freely falling gyroscopes to precess relative to fixed distant stars, extending the stationary Lense-Thirring effect. The precession rate decays as the square of the inverse distance to the source and is proportional to a suitable Noether current for dual asymp…</p><br/><p>[Phys. Rev. Lett. 129, 061101] Published Tue Aug 02, 2022</p>]]></content:encoded>
1733 <dc:title>Precession Caused by Gravitational Waves</dc:title>
1734 <dc:creator>Ali Seraj and Blagoje Oblak</dc:creator>
1735 <dc:date>2022-08-02T10:00:00+00:00</dc:date>
1736 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1737 <dc:source>Phys. Rev. Lett. 129, 061101 (2022)</dc:source>
1738 <dc:type>article</dc:type>
1739 <dc:identifier>doi:10.1103/PhysRevLett.129.061101</dc:identifier>
1740 <prism:doi>10.1103/PhysRevLett.129.061101</prism:doi>
1741 <prism:publicationName>Physical Review Letters</prism:publicationName>
1742 <prism:volume>129</prism:volume>
1743 <prism:number>6</prism:number>
1744 <prism:publicationDate>2022-08-02T10:00:00+00:00</prism:publicationDate>
1745 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061101</prism:url>
1746 <prism:startingPage>061101</prism:startingPage>
1747 <dc:subject>Gravitation and Astrophysics</dc:subject>
1748 <prism:section>Gravitation and Astrophysics</prism:section>
1749 </item>
1750 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.061301">
1751 <title>First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at $z∼4$: Constraints on Matter Density Fluctuations at High Redshift</title>
1752 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.061301</link>
1753 <description>Author(s): Hironao Miyatake, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Nanaka Yamamoto, Atsushi J. Nishizawa, Neta Bahcall, Satoshi Miyazaki, and Andrés A. Plazas Malagón<br/><p>Gravitational lensing of the cosmic microwave background has been used to probe the distribution of dark matter around some of the earliest galaxies in the Universe.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.061301.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 061301] Published Mon Aug 01, 2022</description>
1754 <content:encoded><![CDATA[<p>Author(s): Hironao Miyatake, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Nanaka Yamamoto, Atsushi J. Nishizawa, Neta Bahcall, Satoshi Miyazaki, and Andrés A. Plazas Malagón</p><p>Gravitational lensing of the cosmic microwave background has been used to probe the distribution of dark matter around some of the earliest galaxies in the Universe.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.061301.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 061301] Published Mon Aug 01, 2022</p>]]></content:encoded>
1755 <dc:title>First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at $z∼4$: Constraints on Matter Density Fluctuations at High Redshift</dc:title>
1756 <dc:creator>Hironao Miyatake, Yuichi Harikane, Masami Ouchi, Yoshiaki Ono, Nanaka Yamamoto, Atsushi J. Nishizawa, Neta Bahcall, Satoshi Miyazaki, and Andrés A. Plazas Malagón</dc:creator>
1757 <dc:date>2022-08-01T10:00:00+00:00</dc:date>
1758 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1759 <dc:source>Phys. Rev. Lett. 129, 061301 (2022)</dc:source>
1760 <dc:type>article</dc:type>
1761 <dc:identifier>doi:10.1103/PhysRevLett.129.061301</dc:identifier>
1762 <prism:doi>10.1103/PhysRevLett.129.061301</prism:doi>
1763 <prism:publicationName>Physical Review Letters</prism:publicationName>
1764 <prism:volume>129</prism:volume>
1765 <prism:number>6</prism:number>
1766 <prism:publicationDate>2022-08-01T10:00:00+00:00</prism:publicationDate>
1767 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.061301</prism:url>
1768 <prism:startingPage>061301</prism:startingPage>
1769 <dc:subject>Gravitation and Astrophysics</dc:subject>
1770 <prism:section>Gravitation and Astrophysics</prism:section>
1771 </item>
1772 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.041101">
1773 <title>Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes</title>
1774 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.041101</link>
1775 <description>Author(s): Valerie Domcke, Camilo Garcia-Cely, and Nicholas L. Rodd<br/><p>Gravitational waves (GWs) generate oscillating electromagnetic effects in the vicinity of external electric and magnetic fields. We discuss this phenomenon with a particular focus on reinterpreting the results of axion haloscopes based on lumped-element detectors, which probe GWs in the 100 kHz–100 …</p><br/>[Phys. Rev. Lett. 129, 041101] Published Wed Jul 20, 2022</description>
1776 <content:encoded><![CDATA[<p>Author(s): Valerie Domcke, Camilo Garcia-Cely, and Nicholas L. Rodd</p><p>Gravitational waves (GWs) generate oscillating electromagnetic effects in the vicinity of external electric and magnetic fields. We discuss this phenomenon with a particular focus on reinterpreting the results of axion haloscopes based on lumped-element detectors, which probe GWs in the 100 kHz–100 …</p><br/><p>[Phys. Rev. Lett. 129, 041101] Published Wed Jul 20, 2022</p>]]></content:encoded>
1777 <dc:title>Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes</dc:title>
1778 <dc:creator>Valerie Domcke, Camilo Garcia-Cely, and Nicholas L. Rodd</dc:creator>
1779 <dc:date>2022-07-20T10:00:00+00:00</dc:date>
1780 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1781 <dc:source>Phys. Rev. Lett. 129, 041101 (2022)</dc:source>
1782 <dc:type>article</dc:type>
1783 <dc:identifier>doi:10.1103/PhysRevLett.129.041101</dc:identifier>
1784 <prism:doi>10.1103/PhysRevLett.129.041101</prism:doi>
1785 <prism:publicationName>Physical Review Letters</prism:publicationName>
1786 <prism:volume>129</prism:volume>
1787 <prism:number>4</prism:number>
1788 <prism:publicationDate>2022-07-20T10:00:00+00:00</prism:publicationDate>
1789 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.041101</prism:url>
1790 <prism:startingPage>041101</prism:startingPage>
1791 <dc:subject>Gravitation and Astrophysics</dc:subject>
1792 <prism:section>Gravitation and Astrophysics</prism:section>
1793 </item>
1794 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.031302">
1795 <title>Search for Dark-Matter-Induced Oscillations of Fundamental Constants Using Molecular Spectroscopy</title>
1796 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.031302</link>
1797 <description>Author(s): R. Oswald, A. Nevsky, V. Vogt, S. Schiller, N. L. Figueroa, K. Zhang, O. Tretiak, D. Antypas, D. Budker, A. Banerjee, and G. Perez<br/><p>A possible implication of an ultralight dark matter field interacting with the standard model degrees of freedom is oscillations of fundamental constants. Here, we establish direct experimental bounds on the coupling of an oscillating ultralight dark matter field to the up, down, and strange quarks …</p><br/>[Phys. Rev. Lett. 129, 031302] Published Fri Jul 15, 2022</description>
1798 <content:encoded><![CDATA[<p>Author(s): R. Oswald, A. Nevsky, V. Vogt, S. Schiller, N. L. Figueroa, K. Zhang, O. Tretiak, D. Antypas, D. Budker, A. Banerjee, and G. Perez</p><p>A possible implication of an ultralight dark matter field interacting with the standard model degrees of freedom is oscillations of fundamental constants. Here, we establish direct experimental bounds on the coupling of an oscillating ultralight dark matter field to the up, down, and strange quarks …</p><br/><p>[Phys. Rev. Lett. 129, 031302] Published Fri Jul 15, 2022</p>]]></content:encoded>
1799 <dc:title>Search for Dark-Matter-Induced Oscillations of Fundamental Constants Using Molecular Spectroscopy</dc:title>
1800 <dc:creator>R. Oswald, A. Nevsky, V. Vogt, S. Schiller, N. L. Figueroa, K. Zhang, O. Tretiak, D. Antypas, D. Budker, A. Banerjee, and G. Perez</dc:creator>
1801 <dc:date>2022-07-15T10:00:00+00:00</dc:date>
1802 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1803 <dc:source>Phys. Rev. Lett. 129, 031302 (2022)</dc:source>
1804 <dc:type>article</dc:type>
1805 <dc:identifier>doi:10.1103/PhysRevLett.129.031302</dc:identifier>
1806 <prism:doi>10.1103/PhysRevLett.129.031302</prism:doi>
1807 <prism:publicationName>Physical Review Letters</prism:publicationName>
1808 <prism:volume>129</prism:volume>
1809 <prism:number>3</prism:number>
1810 <prism:publicationDate>2022-07-15T10:00:00+00:00</prism:publicationDate>
1811 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.031302</prism:url>
1812 <prism:startingPage>031302</prism:startingPage>
1813 <dc:subject>Gravitation and Astrophysics</dc:subject>
1814 <prism:section>Gravitation and Astrophysics</prism:section>
1815 </item>
1816 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.031102">
1817 <title>Distinguishing a Slowly Accelerating Black Hole by Differential Time Delays of Images</title>
1818 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.031102</link>
1819 <description>Author(s): Amjad Ashoorioon, Mohammad Bagher Jahani Poshteh, and Robert B. Mann<br/><p>Accelerating supermassive black holes, connected to cosmic strings, could contribute to structure formation and get captured by galaxies if their velocities are small. This would mean that the acceleration of these black holes is small, too. Such a slow acceleration has no significant effect on the …</p><br/>[Phys. Rev. Lett. 129, 031102] Published Tue Jul 12, 2022</description>
1820 <content:encoded><![CDATA[<p>Author(s): Amjad Ashoorioon, Mohammad Bagher Jahani Poshteh, and Robert B. Mann</p><p>Accelerating supermassive black holes, connected to cosmic strings, could contribute to structure formation and get captured by galaxies if their velocities are small. This would mean that the acceleration of these black holes is small, too. Such a slow acceleration has no significant effect on the …</p><br/><p>[Phys. Rev. Lett. 129, 031102] Published Tue Jul 12, 2022</p>]]></content:encoded>
1821 <dc:title>Distinguishing a Slowly Accelerating Black Hole by Differential Time Delays of Images</dc:title>
1822 <dc:creator>Amjad Ashoorioon, Mohammad Bagher Jahani Poshteh, and Robert B. Mann</dc:creator>
1823 <dc:date>2022-07-12T10:00:00+00:00</dc:date>
1824 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1825 <dc:source>Phys. Rev. Lett. 129, 031102 (2022)</dc:source>
1826 <dc:type>article</dc:type>
1827 <dc:identifier>doi:10.1103/PhysRevLett.129.031102</dc:identifier>
1828 <prism:doi>10.1103/PhysRevLett.129.031102</prism:doi>
1829 <prism:publicationName>Physical Review Letters</prism:publicationName>
1830 <prism:volume>129</prism:volume>
1831 <prism:number>3</prism:number>
1832 <prism:publicationDate>2022-07-12T10:00:00+00:00</prism:publicationDate>
1833 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.031102</prism:url>
1834 <prism:startingPage>031102</prism:startingPage>
1835 <dc:subject>Gravitation and Astrophysics</dc:subject>
1836 <prism:section>Gravitation and Astrophysics</prism:section>
1837 </item>
1838 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.031103">
1839 <title>Avoidance of Strong Coupling in General Relativity Solutions with a Timelike Scalar Profile in a Class of Ghost-Free Scalar-Tensor Theories</title>
1840 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.031103</link>
1841 <description>Author(s): Antonio De Felice, Shinji Mukohyama, and Kazufumi Takahashi<br/><p>Modified gravity theories can accommodate exact solutions, for which the metric has the same form as the one in general relativity, i.e., stealth solutions. One problem with these stealth solutions is that perturbations around them exhibit strong coupling when the solutions are realized in degenerat…</p><br/>[Phys. Rev. Lett. 129, 031103] Published Tue Jul 12, 2022</description>
1842 <content:encoded><![CDATA[<p>Author(s): Antonio De Felice, Shinji Mukohyama, and Kazufumi Takahashi</p><p>Modified gravity theories can accommodate exact solutions, for which the metric has the same form as the one in general relativity, i.e., stealth solutions. One problem with these stealth solutions is that perturbations around them exhibit strong coupling when the solutions are realized in degenerat…</p><br/><p>[Phys. Rev. Lett. 129, 031103] Published Tue Jul 12, 2022</p>]]></content:encoded>
1843 <dc:title>Avoidance of Strong Coupling in General Relativity Solutions with a Timelike Scalar Profile in a Class of Ghost-Free Scalar-Tensor Theories</dc:title>
1844 <dc:creator>Antonio De Felice, Shinji Mukohyama, and Kazufumi Takahashi</dc:creator>
1845 <dc:date>2022-07-12T10:00:00+00:00</dc:date>
1846 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1847 <dc:source>Phys. Rev. Lett. 129, 031103 (2022)</dc:source>
1848 <dc:type>article</dc:type>
1849 <dc:identifier>doi:10.1103/PhysRevLett.129.031103</dc:identifier>
1850 <prism:doi>10.1103/PhysRevLett.129.031103</prism:doi>
1851 <prism:publicationName>Physical Review Letters</prism:publicationName>
1852 <prism:volume>129</prism:volume>
1853 <prism:number>3</prism:number>
1854 <prism:publicationDate>2022-07-12T10:00:00+00:00</prism:publicationDate>
1855 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.031103</prism:url>
1856 <prism:startingPage>031103</prism:startingPage>
1857 <dc:subject>Gravitation and Astrophysics</dc:subject>
1858 <prism:section>Gravitation and Astrophysics</prism:section>
1859 </item>
1860 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.031101">
1861 <title>10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection</title>
1862 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.031101</link>
1863 <description>Author(s): Joscha Heinze, Karsten Danzmann, Benno Willke, and Henning Vahlbruch<br/><p>Future generations of gravitational-wave detectors (GWD) are targeting an effective quantum noise reduction of 10 dB via the application of squeezed states of light. In the last joint observation run O3, the advanced large-scale GWDs LIGO and Virgo already used the squeezing technology, albeit with …</p><br/>[Phys. Rev. Lett. 129, 031101] Published Mon Jul 11, 2022</description>
1864 <content:encoded><![CDATA[<p>Author(s): Joscha Heinze, Karsten Danzmann, Benno Willke, and Henning Vahlbruch</p><p>Future generations of gravitational-wave detectors (GWD) are targeting an effective quantum noise reduction of 10 dB via the application of squeezed states of light. In the last joint observation run O3, the advanced large-scale GWDs LIGO and Virgo already used the squeezing technology, albeit with …</p><br/><p>[Phys. Rev. Lett. 129, 031101] Published Mon Jul 11, 2022</p>]]></content:encoded>
1865 <dc:title>10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection</dc:title>
1866 <dc:creator>Joscha Heinze, Karsten Danzmann, Benno Willke, and Henning Vahlbruch</dc:creator>
1867 <dc:date>2022-07-11T10:00:00+00:00</dc:date>
1868 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1869 <dc:source>Phys. Rev. Lett. 129, 031101 (2022)</dc:source>
1870 <dc:type>article</dc:type>
1871 <dc:identifier>doi:10.1103/PhysRevLett.129.031101</dc:identifier>
1872 <prism:doi>10.1103/PhysRevLett.129.031101</prism:doi>
1873 <prism:publicationName>Physical Review Letters</prism:publicationName>
1874 <prism:volume>129</prism:volume>
1875 <prism:number>3</prism:number>
1876 <prism:publicationDate>2022-07-11T10:00:00+00:00</prism:publicationDate>
1877 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.031101</prism:url>
1878 <prism:startingPage>031101</prism:startingPage>
1879 <dc:subject>Gravitation and Astrophysics</dc:subject>
1880 <prism:section>Gravitation and Astrophysics</prism:section>
1881 </item>
1882 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.031301">
1883 <title>Improved Bounds on Ultralight Scalar Dark Matter in the Radio-Frequency Range</title>
1884 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.031301</link>
1885 <description>Author(s): Oleg Tretiak, Xue Zhang, Nataniel L. Figueroa, Dionysios Antypas, Andrea Brogna, Abhishek Banerjee, Gilad Perez, and Dmitry Budker<br/><p>We present a search for fundamental constant oscillations in the range 20 kHz–100 MHz that may arise within models for ultralight dark matter (UDM). Using two independent optical-spectroscopy apparatuses, we achieve up to $×1000$ greater sensitivity in the search relative to previous work [D. Antypa…</p><br/>[Phys. Rev. Lett. 129, 031301] Published Mon Jul 11, 2022</description>
1886 <content:encoded><![CDATA[<p>Author(s): Oleg Tretiak, Xue Zhang, Nataniel L. Figueroa, Dionysios Antypas, Andrea Brogna, Abhishek Banerjee, Gilad Perez, and Dmitry Budker</p><p>We present a search for fundamental constant oscillations in the range 20 kHz–100 MHz that may arise within models for ultralight dark matter (UDM). Using two independent optical-spectroscopy apparatuses, we achieve up to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mo>×</mo><mn>1000</mn></mrow></math> greater sensitivity in the search relative to previous work [D. Antypas …</p><br/><p>[Phys. Rev. Lett. 129, 031301] Published Mon Jul 11, 2022</p>]]></content:encoded>
1887 <dc:title>Improved Bounds on Ultralight Scalar Dark Matter in the Radio-Frequency Range</dc:title>
1888 <dc:creator>Oleg Tretiak, Xue Zhang, Nataniel L. Figueroa, Dionysios Antypas, Andrea Brogna, Abhishek Banerjee, Gilad Perez, and Dmitry Budker</dc:creator>
1889 <dc:date>2022-07-11T10:00:00+00:00</dc:date>
1890 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1891 <dc:source>Phys. Rev. Lett. 129, 031301 (2022)</dc:source>
1892 <dc:type>article</dc:type>
1893 <dc:identifier>doi:10.1103/PhysRevLett.129.031301</dc:identifier>
1894 <prism:doi>10.1103/PhysRevLett.129.031301</prism:doi>
1895 <prism:publicationName>Physical Review Letters</prism:publicationName>
1896 <prism:volume>129</prism:volume>
1897 <prism:number>3</prism:number>
1898 <prism:publicationDate>2022-07-11T10:00:00+00:00</prism:publicationDate>
1899 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.031301</prism:url>
1900 <prism:startingPage>031301</prism:startingPage>
1901 <dc:subject>Gravitation and Astrophysics</dc:subject>
1902 <prism:section>Gravitation and Astrophysics</prism:section>
1903 </item>
1904 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.021301">
1905 <title>Constraints on Single-Field Inflation from the BOSS Galaxy Survey</title>
1906 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.021301</link>
1907 <description>Author(s): Giovanni Cabass, Mikhail M. Ivanov, Oliver H. E. Philcox, Marko Simonović, and Matias Zaldarriaga<br/><p>Nonlocal primordial non-Gaussianity (NLPNG) is a smoking gun of interactions in single-field inflationary models and can be written as a combination of the equilateral and orthogonal templates. We present the first constraints on these from the redshift-space galaxy power spectra and bispectra of th…</p><br/>[Phys. Rev. Lett. 129, 021301] Published Wed Jul 06, 2022</description>
1908 <content:encoded><![CDATA[<p>Author(s): Giovanni Cabass, Mikhail M. Ivanov, Oliver H. E. Philcox, Marko Simonović, and Matias Zaldarriaga</p><p>Nonlocal primordial non-Gaussianity (NLPNG) is a smoking gun of interactions in single-field inflationary models and can be written as a combination of the equilateral and orthogonal templates. We present the first constraints on these from the redshift-space galaxy power spectra and bispectra of th…</p><br/><p>[Phys. Rev. Lett. 129, 021301] Published Wed Jul 06, 2022</p>]]></content:encoded>
1909 <dc:title>Constraints on Single-Field Inflation from the BOSS Galaxy Survey</dc:title>
1910 <dc:creator>Giovanni Cabass, Mikhail M. Ivanov, Oliver H. E. Philcox, Marko Simonović, and Matias Zaldarriaga</dc:creator>
1911 <dc:date>2022-07-06T10:00:00+00:00</dc:date>
1912 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1913 <dc:source>Phys. Rev. Lett. 129, 021301 (2022)</dc:source>
1914 <dc:type>article</dc:type>
1915 <dc:identifier>doi:10.1103/PhysRevLett.129.021301</dc:identifier>
1916 <prism:doi>10.1103/PhysRevLett.129.021301</prism:doi>
1917 <prism:publicationName>Physical Review Letters</prism:publicationName>
1918 <prism:volume>129</prism:volume>
1919 <prism:number>2</prism:number>
1920 <prism:publicationDate>2022-07-06T10:00:00+00:00</prism:publicationDate>
1921 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.021301</prism:url>
1922 <prism:startingPage>021301</prism:startingPage>
1923 <dc:subject>Gravitation and Astrophysics</dc:subject>
1924 <prism:section>Gravitation and Astrophysics</prism:section>
1925 </item>
1926 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.021302">
1927 <title>Joint Cosmic Microwave Background and Big Bang Nucleosynthesis Constraints on Light Dark Sectors with Dark Radiation</title>
1928 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.021302</link>
1929 <description>Author(s): Cara Giovanetti, Mariangela Lisanti, Hongwan Liu, and Joshua T. Ruderman<br/><p>Combining constraints from the cosmic microwave background and Big Bang nucleosynthesis yields generic lower bounds on light dark matter candidates.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.021302.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 129, 021302] Published Wed Jul 06, 2022</description>
1930 <content:encoded><![CDATA[<p>Author(s): Cara Giovanetti, Mariangela Lisanti, Hongwan Liu, and Joshua T. Ruderman</p><p>Combining constraints from the cosmic microwave background and Big Bang nucleosynthesis yields generic lower bounds on light dark matter candidates.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.129.021302.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 129, 021302] Published Wed Jul 06, 2022</p>]]></content:encoded>
1931 <dc:title>Joint Cosmic Microwave Background and Big Bang Nucleosynthesis Constraints on Light Dark Sectors with Dark Radiation</dc:title>
1932 <dc:creator>Cara Giovanetti, Mariangela Lisanti, Hongwan Liu, and Joshua T. Ruderman</dc:creator>
1933 <dc:date>2022-07-06T10:00:00+00:00</dc:date>
1934 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1935 <dc:source>Phys. Rev. Lett. 129, 021302 (2022)</dc:source>
1936 <dc:type>article</dc:type>
1937 <dc:identifier>doi:10.1103/PhysRevLett.129.021302</dc:identifier>
1938 <prism:doi>10.1103/PhysRevLett.129.021302</prism:doi>
1939 <prism:publicationName>Physical Review Letters</prism:publicationName>
1940 <prism:volume>129</prism:volume>
1941 <prism:number>2</prism:number>
1942 <prism:publicationDate>2022-07-06T10:00:00+00:00</prism:publicationDate>
1943 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.021302</prism:url>
1944 <prism:startingPage>021302</prism:startingPage>
1945 <dc:subject>Gravitation and Astrophysics</dc:subject>
1946 <prism:section>Gravitation and Astrophysics</prism:section>
1947 </item>
1948 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.129.011101">
1949 <title>Constraining Heavy Axionlike Particles by Energy Deposition in Globular Cluster Stars</title>
1950 <link>http://link.aps.org/doi/10.1103/PhysRevLett.129.011101</link>
1951 <description>Author(s): Giuseppe Lucente, Oscar Straniero, Pierluca Carenza, Maurizio Giannotti, and Alessandro Mirizzi<br/><p>Heavy axionlike particles (ALPs) with masses up to a few 100 keV and coupled with photons can be efficiently produced in stellar plasmas. We present a new “ballistic” recipe that covers both the energy-loss and energy-transfer regimes, and we perform the first dedicated simulation of Globular Cluste…</p><br/>[Phys. Rev. Lett. 129, 011101] Published Wed Jun 29, 2022</description>
1952 <content:encoded><![CDATA[<p>Author(s): Giuseppe Lucente, Oscar Straniero, Pierluca Carenza, Maurizio Giannotti, and Alessandro Mirizzi</p><p>Heavy axionlike particles (ALPs) with masses up to a few 100 keV and coupled with photons can be efficiently produced in stellar plasmas. We present a new “ballistic” recipe that covers both the energy-loss and energy-transfer regimes, and we perform the first dedicated simulation of Globular Cluste…</p><br/><p>[Phys. Rev. Lett. 129, 011101] Published Wed Jun 29, 2022</p>]]></content:encoded>
1953 <dc:title>Constraining Heavy Axionlike Particles by Energy Deposition in Globular Cluster Stars</dc:title>
1954 <dc:creator>Giuseppe Lucente, Oscar Straniero, Pierluca Carenza, Maurizio Giannotti, and Alessandro Mirizzi</dc:creator>
1955 <dc:date>2022-06-29T10:00:00+00:00</dc:date>
1956 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1957 <dc:source>Phys. Rev. Lett. 129, 011101 (2022)</dc:source>
1958 <dc:type>article</dc:type>
1959 <dc:identifier>doi:10.1103/PhysRevLett.129.011101</dc:identifier>
1960 <prism:doi>10.1103/PhysRevLett.129.011101</prism:doi>
1961 <prism:publicationName>Physical Review Letters</prism:publicationName>
1962 <prism:volume>129</prism:volume>
1963 <prism:number>1</prism:number>
1964 <prism:publicationDate>2022-06-29T10:00:00+00:00</prism:publicationDate>
1965 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.129.011101</prism:url>
1966 <prism:startingPage>011101</prism:startingPage>
1967 <dc:subject>Gravitation and Astrophysics</dc:subject>
1968 <prism:section>Gravitation and Astrophysics</prism:section>
1969 </item>
1970 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.251101">
1971 <title>Gravitational Glint: Detectable Gravitational Wave Tails from Stars and Compact Objects</title>
1972 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.251101</link>
1973 <description>Author(s): Craig Copi and Glenn D. Starkman<br/><p>Observations of a merging neutron star binary in both gravitational waves, by the Laser Interferometer Gravitational-Wave Observatory (LIGO), and across the spectrum of electromagnetic radiation, by myriad telescopes, have been used to show that gravitational waves travel in vacuum at a speed that i…</p><br/>[Phys. Rev. Lett. 128, 251101] Published Wed Jun 22, 2022</description>
1974 <content:encoded><![CDATA[<p>Author(s): Craig Copi and Glenn D. Starkman</p><p>Observations of a merging neutron star binary in both gravitational waves, by the Laser Interferometer Gravitational-Wave Observatory (LIGO), and across the spectrum of electromagnetic radiation, by myriad telescopes, have been used to show that gravitational waves travel in vacuum at a speed that i…</p><br/><p>[Phys. Rev. Lett. 128, 251101] Published Wed Jun 22, 2022</p>]]></content:encoded>
1975 <dc:title>Gravitational Glint: Detectable Gravitational Wave Tails from Stars and Compact Objects</dc:title>
1976 <dc:creator>Craig Copi and Glenn D. Starkman</dc:creator>
1977 <dc:date>2022-06-22T10:00:00+00:00</dc:date>
1978 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
1979 <dc:source>Phys. Rev. Lett. 128, 251101 (2022)</dc:source>
1980 <dc:type>article</dc:type>
1981 <dc:identifier>doi:10.1103/PhysRevLett.128.251101</dc:identifier>
1982 <prism:doi>10.1103/PhysRevLett.128.251101</prism:doi>
1983 <prism:publicationName>Physical Review Letters</prism:publicationName>
1984 <prism:volume>128</prism:volume>
1985 <prism:number>25</prism:number>
1986 <prism:publicationDate>2022-06-22T10:00:00+00:00</prism:publicationDate>
1987 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.251101</prism:url>
1988 <prism:startingPage>251101</prism:startingPage>
1989 <dc:subject>Gravitation and Astrophysics</dc:subject>
1990 <prism:section>Gravitation and Astrophysics</prism:section>
1991 </item>
1992 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.231101">
1993 <title>Adiabatic Waveforms from Extreme-Mass-Ratio Inspirals: An Analytical Approach</title>
1994 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.231101</link>
1995 <description>Author(s): Soichiro Isoyama, Ryuichi Fujita, Alvin J. K. Chua, Hiroyuki Nakano, Adam Pound, and Norichika Sago<br/><p>Scientific analysis for the gravitational wave detector LISA will require theoretical waveforms from extreme-mass-ratio inspirals (EMRIs) that extensively cover all possible orbital and spin configurations around astrophysical Kerr black holes. However, on-the-fly calculations of these waveforms hav…</p><br/>[Phys. Rev. Lett. 128, 231101] Published Fri Jun 10, 2022</description>
1996 <content:encoded><![CDATA[<p>Author(s): Soichiro Isoyama, Ryuichi Fujita, Alvin J. K. Chua, Hiroyuki Nakano, Adam Pound, and Norichika Sago</p><p>Scientific analysis for the gravitational wave detector LISA will require theoretical waveforms from extreme-mass-ratio inspirals (EMRIs) that extensively cover all possible orbital and spin configurations around astrophysical Kerr black holes. However, on-the-fly calculations of these waveforms hav…</p><br/><p>[Phys. Rev. Lett. 128, 231101] Published Fri Jun 10, 2022</p>]]></content:encoded>
1997 <dc:title>Adiabatic Waveforms from Extreme-Mass-Ratio Inspirals: An Analytical Approach</dc:title>
1998 <dc:creator>Soichiro Isoyama, Ryuichi Fujita, Alvin J. K. Chua, Hiroyuki Nakano, Adam Pound, and Norichika Sago</dc:creator>
1999 <dc:date>2022-06-10T10:00:00+00:00</dc:date>
2000 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2001 <dc:source>Phys. Rev. Lett. 128, 231101 (2022)</dc:source>
2002 <dc:type>article</dc:type>
2003 <dc:identifier>doi:10.1103/PhysRevLett.128.231101</dc:identifier>
2004 <prism:doi>10.1103/PhysRevLett.128.231101</prism:doi>
2005 <prism:publicationName>Physical Review Letters</prism:publicationName>
2006 <prism:volume>128</prism:volume>
2007 <prism:number>23</prism:number>
2008 <prism:publicationDate>2022-06-10T10:00:00+00:00</prism:publicationDate>
2009 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.231101</prism:url>
2010 <prism:startingPage>231101</prism:startingPage>
2011 <dc:subject>Gravitation and Astrophysics</dc:subject>
2012 <prism:section>Gravitation and Astrophysics</prism:section>
2013 </item>
2014 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.231102">
2015 <title>Properties of Daily Helium Fluxes</title>
2016 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.231102</link>
2017 <description>Author(s): M. Aguilar <em>et al.</em> (AMS Collaboration)<br/><p>We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on $7.6×{10}^{8}$ helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The he…</p><br/>[Phys. Rev. Lett. 128, 231102] Published Fri Jun 10, 2022</description>
2018 <content:encoded><![CDATA[<p>Author(s): M. Aguilar <em>et al.</em> (AMS Collaboration)</p><p>We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mn>7.6</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium fl…</p><br/><p>[Phys. Rev. Lett. 128, 231102] Published Fri Jun 10, 2022</p>]]></content:encoded>
2019 <dc:title>Properties of Daily Helium Fluxes</dc:title>
2020 <dc:creator>M. Aguilar <em>et al.</em> (AMS Collaboration)</dc:creator>
2021 <dc:date>2022-06-10T10:00:00+00:00</dc:date>
2022 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2023 <dc:source>Phys. Rev. Lett. 128, 231102 (2022)</dc:source>
2024 <dc:type>article</dc:type>
2025 <dc:identifier>doi:10.1103/PhysRevLett.128.231102</dc:identifier>
2026 <prism:doi>10.1103/PhysRevLett.128.231102</prism:doi>
2027 <prism:publicationName>Physical Review Letters</prism:publicationName>
2028 <prism:volume>128</prism:volume>
2029 <prism:number>23</prism:number>
2030 <prism:publicationDate>2022-06-10T10:00:00+00:00</prism:publicationDate>
2031 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.231102</prism:url>
2032 <prism:startingPage>231102</prism:startingPage>
2033 <dc:subject>Gravitation and Astrophysics</dc:subject>
2034 <prism:section>Gravitation and Astrophysics</prism:section>
2035 </item>
2036 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.231301">
2037 <title>Singularities from Entropy</title>
2038 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.231301</link>
2039 <description>Author(s): Raphael Bousso and Arvin Shahbazi-Moghaddam<br/><p>Assuming the Bousso bound, we prove a singularity theorem: if the light rays entering a hyperentropic region contract, then at least one light ray must be incomplete. “Hyperentropic” means that the entropy of the region exceeds the Bekenstein-Hawking entropy of its spatial boundary. Our theorem prov…</p><br/>[Phys. Rev. Lett. 128, 231301] Published Thu Jun 09, 2022</description>
2040 <content:encoded><![CDATA[<p>Author(s): Raphael Bousso and Arvin Shahbazi-Moghaddam</p><p>Assuming the Bousso bound, we prove a singularity theorem: if the light rays entering a hyperentropic region contract, then at least one light ray must be incomplete. “Hyperentropic” means that the entropy of the region exceeds the Bekenstein-Hawking entropy of its spatial boundary. Our theorem prov…</p><br/><p>[Phys. Rev. Lett. 128, 231301] Published Thu Jun 09, 2022</p>]]></content:encoded>
2041 <dc:title>Singularities from Entropy</dc:title>
2042 <dc:creator>Raphael Bousso and Arvin Shahbazi-Moghaddam</dc:creator>
2043 <dc:date>2022-06-09T10:00:00+00:00</dc:date>
2044 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2045 <dc:source>Phys. Rev. Lett. 128, 231301 (2022)</dc:source>
2046 <dc:type>article</dc:type>
2047 <dc:identifier>doi:10.1103/PhysRevLett.128.231301</dc:identifier>
2048 <prism:doi>10.1103/PhysRevLett.128.231301</prism:doi>
2049 <prism:publicationName>Physical Review Letters</prism:publicationName>
2050 <prism:volume>128</prism:volume>
2051 <prism:number>23</prism:number>
2052 <prism:publicationDate>2022-06-09T10:00:00+00:00</prism:publicationDate>
2053 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.231301</prism:url>
2054 <prism:startingPage>231301</prism:startingPage>
2055 <dc:subject>Gravitation and Astrophysics</dc:subject>
2056 <prism:section>Gravitation and Astrophysics</prism:section>
2057 </item>
2058 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221101">
2059 <title>Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino</title>
2060 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221101</link>
2061 <description>Author(s): Simeon Reusch <em>et al.</em><br/><p>Researchers have found new evidence that high-energy neutrinos are emitted when a black hole gobbles up a hapless star.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.221101.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 128, 221101] Published Fri Jun 03, 2022</description>
2062 <content:encoded><![CDATA[<p>Author(s): Simeon Reusch <em>et al.</em></p><p>Researchers have found new evidence that high-energy neutrinos are emitted when a black hole gobbles up a hapless star.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.221101.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 128, 221101] Published Fri Jun 03, 2022</p>]]></content:encoded>
2063 <dc:title>Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino</dc:title>
2064 <dc:creator>Simeon Reusch <em>et al.</em></dc:creator>
2065 <dc:date>2022-06-03T10:00:00+00:00</dc:date>
2066 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2067 <dc:source>Phys. Rev. Lett. 128, 221101 (2022)</dc:source>
2068 <dc:type>article</dc:type>
2069 <dc:identifier>doi:10.1103/PhysRevLett.128.221101</dc:identifier>
2070 <prism:doi>10.1103/PhysRevLett.128.221101</prism:doi>
2071 <prism:publicationName>Physical Review Letters</prism:publicationName>
2072 <prism:volume>128</prism:volume>
2073 <prism:number>22</prism:number>
2074 <prism:publicationDate>2022-06-03T10:00:00+00:00</prism:publicationDate>
2075 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221101</prism:url>
2076 <prism:startingPage>221101</prism:startingPage>
2077 <dc:subject>Gravitation and Astrophysics</dc:subject>
2078 <prism:section>Gravitation and Astrophysics</prism:section>
2079 </item>
2080 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221103">
2081 <title>Low-Energy Supernovae Severely Constrain Radiative Particle Decays</title>
2082 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221103</link>
2083 <description>Author(s): Andrea Caputo, Hans-Thomas Janka, Georg Raffelt, and Edoardo Vitagliano<br/><p>The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly interacting particles such as sterile neutrinos, dark photons, axionlike particles (ALPs), and others. Radiative decays such as $a→2γ$ deposit this energy in the surrounding material if the me…</p><br/>[Phys. Rev. Lett. 128, 221103] Published Fri Jun 03, 2022</description>
2084 <content:encoded><![CDATA[<p>Author(s): Andrea Caputo, Hans-Thomas Janka, Georg Raffelt, and Edoardo Vitagliano</p><p>The hot and dense core formed in the collapse of a massive star is a powerful source of hypothetical feebly interacting particles such as sterile neutrinos, dark photons, axionlike particles (ALPs), and others. Radiative decays such as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>a</mi><mo stretchy="false">→</mo><mn>2</mn><mi>γ</mi></mrow></math> deposit this energy in the surrounding material if the mean…</p><br/><p>[Phys. Rev. Lett. 128, 221103] Published Fri Jun 03, 2022</p>]]></content:encoded>
2085 <dc:title>Low-Energy Supernovae Severely Constrain Radiative Particle Decays</dc:title>
2086 <dc:creator>Andrea Caputo, Hans-Thomas Janka, Georg Raffelt, and Edoardo Vitagliano</dc:creator>
2087 <dc:date>2022-06-03T10:00:00+00:00</dc:date>
2088 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2089 <dc:source>Phys. Rev. Lett. 128, 221103 (2022)</dc:source>
2090 <dc:type>article</dc:type>
2091 <dc:identifier>doi:10.1103/PhysRevLett.128.221103</dc:identifier>
2092 <prism:doi>10.1103/PhysRevLett.128.221103</prism:doi>
2093 <prism:publicationName>Physical Review Letters</prism:publicationName>
2094 <prism:volume>128</prism:volume>
2095 <prism:number>22</prism:number>
2096 <prism:publicationDate>2022-06-03T10:00:00+00:00</prism:publicationDate>
2097 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221103</prism:url>
2098 <prism:startingPage>221103</prism:startingPage>
2099 <dc:subject>Gravitation and Astrophysics</dc:subject>
2100 <prism:section>Gravitation and Astrophysics</prism:section>
2101 </item>
2102 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221104">
2103 <title>Direct Detection Constraints on Blazar-Boosted Dark Matter</title>
2104 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221104</link>
2105 <description>Author(s): Jin-Wei Wang, Alessandro Granelli, and Piero Ullio<br/><p>We explore the possibility that relativistic protons in the extremely powerful jets of blazars may boost via elastic collisions the dark matter particles in the surroundings of the source to high energies. We concentrate on two sample blazars, TXS $0506+056$, towards which IceCube recently reported …</p><br/>[Phys. Rev. Lett. 128, 221104] Published Fri Jun 03, 2022</description>
2106 <content:encoded><![CDATA[<p>Author(s): Jin-Wei Wang, Alessandro Granelli, and Piero Ullio</p><p>We explore the possibility that relativistic protons in the extremely powerful jets of blazars may boost via elastic collisions the dark matter particles in the surroundings of the source to high energies. We concentrate on two sample blazars, TXS <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mn>0506</mn><mo>+</mo><mn>056</mn></mrow></math>, towards which IceCube recently reported ev…</p><br/><p>[Phys. Rev. Lett. 128, 221104] Published Fri Jun 03, 2022</p>]]></content:encoded>
2107 <dc:title>Direct Detection Constraints on Blazar-Boosted Dark Matter</dc:title>
2108 <dc:creator>Jin-Wei Wang, Alessandro Granelli, and Piero Ullio</dc:creator>
2109 <dc:date>2022-06-03T10:00:00+00:00</dc:date>
2110 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2111 <dc:source>Phys. Rev. Lett. 128, 221104 (2022)</dc:source>
2112 <dc:type>article</dc:type>
2113 <dc:identifier>doi:10.1103/PhysRevLett.128.221104</dc:identifier>
2114 <prism:doi>10.1103/PhysRevLett.128.221104</prism:doi>
2115 <prism:publicationName>Physical Review Letters</prism:publicationName>
2116 <prism:volume>128</prism:volume>
2117 <prism:number>22</prism:number>
2118 <prism:publicationDate>2022-06-03T10:00:00+00:00</prism:publicationDate>
2119 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221104</prism:url>
2120 <prism:startingPage>221104</prism:startingPage>
2121 <dc:subject>Gravitation and Astrophysics</dc:subject>
2122 <prism:section>Gravitation and Astrophysics</prism:section>
2123 </item>
2124 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221102">
2125 <title>Sharp Signals of Boson Clouds in Black Hole Binary Inspirals</title>
2126 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221102</link>
2127 <description>Author(s): Daniel Baumann, Gianfranco Bertone, John Stout, and Giovanni Maria Tomaselli<br/><p>Distinctive features of gravitational-wave signals from black hole mergers could reveal the existence of long-sought ultralight bosons.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.221102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 128, 221102] Published Thu Jun 02, 2022</description>
2128 <content:encoded><![CDATA[<p>Author(s): Daniel Baumann, Gianfranco Bertone, John Stout, and Giovanni Maria Tomaselli</p><p>Distinctive features of gravitational-wave signals from black hole mergers could reveal the existence of long-sought ultralight bosons.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.221102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 128, 221102] Published Thu Jun 02, 2022</p>]]></content:encoded>
2129 <dc:title>Sharp Signals of Boson Clouds in Black Hole Binary Inspirals</dc:title>
2130 <dc:creator>Daniel Baumann, Gianfranco Bertone, John Stout, and Giovanni Maria Tomaselli</dc:creator>
2131 <dc:date>2022-06-02T10:00:00+00:00</dc:date>
2132 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2133 <dc:source>Phys. Rev. Lett. 128, 221102 (2022)</dc:source>
2134 <dc:type>article</dc:type>
2135 <dc:identifier>doi:10.1103/PhysRevLett.128.221102</dc:identifier>
2136 <prism:doi>10.1103/PhysRevLett.128.221102</prism:doi>
2137 <prism:publicationName>Physical Review Letters</prism:publicationName>
2138 <prism:volume>128</prism:volume>
2139 <prism:number>22</prism:number>
2140 <prism:publicationDate>2022-06-02T10:00:00+00:00</prism:publicationDate>
2141 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221102</prism:url>
2142 <prism:startingPage>221102</prism:startingPage>
2143 <dc:subject>Gravitation and Astrophysics</dc:subject>
2144 <prism:section>Gravitation and Astrophysics</prism:section>
2145 </item>
2146 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221301">
2147 <title>Big Bang Nucleosynthesis Limits and Relic Gravitational-Wave Detection Prospects</title>
2148 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221301</link>
2149 <description>Author(s): Tina Kahniashvili, Emma Clarke, Jonathan Stepp, and Axel Brandenburg<br/><p>We revisit the big bang nucleosynthesis limits on primordial magnetic fields and/or turbulent motions accounting for the decaying nature of turbulent sources between the time of generation and big bang nucleosynthesis. This leads to larger estimates for the gravitational wave signal than previously …</p><br/>[Phys. Rev. Lett. 128, 221301] Published Wed Jun 01, 2022</description>
2150 <content:encoded><![CDATA[<p>Author(s): Tina Kahniashvili, Emma Clarke, Jonathan Stepp, and Axel Brandenburg</p><p>We revisit the big bang nucleosynthesis limits on primordial magnetic fields and/or turbulent motions accounting for the decaying nature of turbulent sources between the time of generation and big bang nucleosynthesis. This leads to larger estimates for the gravitational wave signal than previously …</p><br/><p>[Phys. Rev. Lett. 128, 221301] Published Wed Jun 01, 2022</p>]]></content:encoded>
2151 <dc:title>Big Bang Nucleosynthesis Limits and Relic Gravitational-Wave Detection Prospects</dc:title>
2152 <dc:creator>Tina Kahniashvili, Emma Clarke, Jonathan Stepp, and Axel Brandenburg</dc:creator>
2153 <dc:date>2022-06-01T10:00:00+00:00</dc:date>
2154 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2155 <dc:source>Phys. Rev. Lett. 128, 221301 (2022)</dc:source>
2156 <dc:type>article</dc:type>
2157 <dc:identifier>doi:10.1103/PhysRevLett.128.221301</dc:identifier>
2158 <prism:doi>10.1103/PhysRevLett.128.221301</prism:doi>
2159 <prism:publicationName>Physical Review Letters</prism:publicationName>
2160 <prism:volume>128</prism:volume>
2161 <prism:number>22</prism:number>
2162 <prism:publicationDate>2022-06-01T10:00:00+00:00</prism:publicationDate>
2163 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221301</prism:url>
2164 <prism:startingPage>221301</prism:startingPage>
2165 <dc:subject>Gravitation and Astrophysics</dc:subject>
2166 <prism:section>Gravitation and Astrophysics</prism:section>
2167 </item>
2168 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.221302">
2169 <title>Do Direct Detection Experiments Constrain Axionlike Particles Coupled to Electrons?</title>
2170 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.221302</link>
2171 <description>Author(s): Ricardo Z. Ferreira, M. C. David Marsh, and Eike Müller<br/><p>Several laboratory experiments have published limits on axionlike particles (ALPs) with feeble couplings to electrons and masses in the kilo-electron-volt to mega-electron-volt range, under the assumption that such ALPs comprise the dark matter. We note that ALPs decay radiatively into photons, and …</p><br/>[Phys. Rev. Lett. 128, 221302] Published Wed Jun 01, 2022</description>
2172 <content:encoded><![CDATA[<p>Author(s): Ricardo Z. Ferreira, M. C. David Marsh, and Eike Müller</p><p>Several laboratory experiments have published limits on axionlike particles (ALPs) with feeble couplings to electrons and masses in the kilo-electron-volt to mega-electron-volt range, under the assumption that such ALPs comprise the dark matter. We note that ALPs decay radiatively into photons, and …</p><br/><p>[Phys. Rev. Lett. 128, 221302] Published Wed Jun 01, 2022</p>]]></content:encoded>
2173 <dc:title>Do Direct Detection Experiments Constrain Axionlike Particles Coupled to Electrons?</dc:title>
2174 <dc:creator>Ricardo Z. Ferreira, M. C. David Marsh, and Eike Müller</dc:creator>
2175 <dc:date>2022-06-01T10:00:00+00:00</dc:date>
2176 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2177 <dc:source>Phys. Rev. Lett. 128, 221302 (2022)</dc:source>
2178 <dc:type>article</dc:type>
2179 <dc:identifier>doi:10.1103/PhysRevLett.128.221302</dc:identifier>
2180 <prism:doi>10.1103/PhysRevLett.128.221302</prism:doi>
2181 <prism:publicationName>Physical Review Letters</prism:publicationName>
2182 <prism:volume>128</prism:volume>
2183 <prism:number>22</prism:number>
2184 <prism:publicationDate>2022-06-01T10:00:00+00:00</prism:publicationDate>
2185 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.221302</prism:url>
2186 <prism:startingPage>221302</prism:startingPage>
2187 <dc:subject>Gravitation and Astrophysics</dc:subject>
2188 <prism:section>Gravitation and Astrophysics</prism:section>
2189 </item>
2190 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.211102">
2191 <title>Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability</title>
2192 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.211102</link>
2193 <description>Author(s): José Luis Jaramillo, Rodrigo Panosso Macedo, and Lamis Al Sheikh<br/><p>Black hole (BH) spectroscopy has emerged as a powerful approach to extracting spacetime information from gravitational wave (GW) observed signals. Yet, quasinormal mode (QNM) spectral instability under small scale perturbations has been recently shown to be a common classical general relativistic ph…</p><br/>[Phys. Rev. Lett. 128, 211102] Published Thu May 26, 2022</description>
2194 <content:encoded><![CDATA[<p>Author(s): José Luis Jaramillo, Rodrigo Panosso Macedo, and Lamis Al Sheikh</p><p>Black hole (BH) spectroscopy has emerged as a powerful approach to extracting spacetime information from gravitational wave (GW) observed signals. Yet, quasinormal mode (QNM) spectral instability under small scale perturbations has been recently shown to be a common classical general relativistic ph…</p><br/><p>[Phys. Rev. Lett. 128, 211102] Published Thu May 26, 2022</p>]]></content:encoded>
2195 <dc:title>Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability</dc:title>
2196 <dc:creator>José Luis Jaramillo, Rodrigo Panosso Macedo, and Lamis Al Sheikh</dc:creator>
2197 <dc:date>2022-05-26T10:00:00+00:00</dc:date>
2198 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2199 <dc:source>Phys. Rev. Lett. 128, 211102 (2022)</dc:source>
2200 <dc:type>article</dc:type>
2201 <dc:identifier>doi:10.1103/PhysRevLett.128.211102</dc:identifier>
2202 <prism:doi>10.1103/PhysRevLett.128.211102</prism:doi>
2203 <prism:publicationName>Physical Review Letters</prism:publicationName>
2204 <prism:volume>128</prism:volume>
2205 <prism:number>21</prism:number>
2206 <prism:publicationDate>2022-05-26T10:00:00+00:00</prism:publicationDate>
2207 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.211102</prism:url>
2208 <prism:startingPage>211102</prism:startingPage>
2209 <dc:subject>Gravitation and Astrophysics</dc:subject>
2210 <prism:section>Gravitation and Astrophysics</prism:section>
2211 </item>
2212 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.211101">
2213 <title>$γ$-Ray Flashes from Dark Photons in Neutron Star Mergers</title>
2214 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.211101</link>
2215 <description>Author(s): Melissa D. Diamond and Gustavo Marques-Tavares<br/><p>In this Letter we begin the study of visible dark sector signals coming from binary neutron star mergers. We focus on dark photons emitted in the 10 ms–1 s after the merger, and show how they can lead to bright transient $γ$-ray signals. The signal will be approximately isotropic, and for much of th…</p><br/>[Phys. Rev. Lett. 128, 211101] Published Tue May 24, 2022</description>
2216 <content:encoded><![CDATA[<p>Author(s): Melissa D. Diamond and Gustavo Marques-Tavares</p><p>In this Letter we begin the study of visible dark sector signals coming from binary neutron star mergers. We focus on dark photons emitted in the 10 ms–1 s after the merger, and show how they can lead to bright transient <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><mrow><mi>γ</mi></mrow></math>-ray signals. The signal will be approximately isotropic, and for much of the …</p><br/><p>[Phys. Rev. Lett. 128, 211101] Published Tue May 24, 2022</p>]]></content:encoded>
2217 <dc:title>$γ$-Ray Flashes from Dark Photons in Neutron Star Mergers</dc:title>
2218 <dc:creator>Melissa D. Diamond and Gustavo Marques-Tavares</dc:creator>
2219 <dc:date>2022-05-24T10:00:00+00:00</dc:date>
2220 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2221 <dc:source>Phys. Rev. Lett. 128, 211101 (2022)</dc:source>
2222 <dc:type>article</dc:type>
2223 <dc:identifier>doi:10.1103/PhysRevLett.128.211101</dc:identifier>
2224 <prism:doi>10.1103/PhysRevLett.128.211101</prism:doi>
2225 <prism:publicationName>Physical Review Letters</prism:publicationName>
2226 <prism:volume>128</prism:volume>
2227 <prism:number>21</prism:number>
2228 <prism:publicationDate>2022-05-24T10:00:00+00:00</prism:publicationDate>
2229 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.211101</prism:url>
2230 <prism:startingPage>211101</prism:startingPage>
2231 <dc:subject>Gravitation and Astrophysics</dc:subject>
2232 <prism:section>Gravitation and Astrophysics</prism:section>
2233 </item>
2234 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.201302">
2235 <title>Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport</title>
2236 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.201302</link>
2237 <description>Author(s): Sebastian von Hausegger, Bruno Lévy, and Roya Mohayaee<br/><p>Developments in computer science could allow astrophysicists to reverse the cosmic distribution of matter from today back to any point in the Universe’s history.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.201302.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 128, 201302] Published Thu May 19, 2022</description>
2238 <content:encoded><![CDATA[<p>Author(s): Sebastian von Hausegger, Bruno Lévy, and Roya Mohayaee</p><p>Developments in computer science could allow astrophysicists to reverse the cosmic distribution of matter from today back to any point in the Universe’s history.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.201302.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 128, 201302] Published Thu May 19, 2022</p>]]></content:encoded>
2239 <dc:title>Accurate Baryon Acoustic Oscillations Reconstruction via Semidiscrete Optimal Transport</dc:title>
2240 <dc:creator>Sebastian von Hausegger, Bruno Lévy, and Roya Mohayaee</dc:creator>
2241 <dc:date>2022-05-19T10:00:00+00:00</dc:date>
2242 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2243 <dc:source>Phys. Rev. Lett. 128, 201302 (2022)</dc:source>
2244 <dc:type>article</dc:type>
2245 <dc:identifier>doi:10.1103/PhysRevLett.128.201302</dc:identifier>
2246 <prism:doi>10.1103/PhysRevLett.128.201302</prism:doi>
2247 <prism:publicationName>Physical Review Letters</prism:publicationName>
2248 <prism:volume>128</prism:volume>
2249 <prism:number>20</prism:number>
2250 <prism:publicationDate>2022-05-19T10:00:00+00:00</prism:publicationDate>
2251 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.201302</prism:url>
2252 <prism:startingPage>201302</prism:startingPage>
2253 <dc:subject>Gravitation and Astrophysics</dc:subject>
2254 <prism:section>Gravitation and Astrophysics</prism:section>
2255 </item>
2256 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.201301">
2257 <title>Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant</title>
2258 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.201301</link>
2259 <description>Author(s): Francis-Yan Cyr-Racine, Fei Ge, and Lloyd Knox<br/><p>A discrepancy between different measurements of the Hubble constant could be removed by the existence of an exotic form of dark matter.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.201301.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 128, 201301] Published Wed May 18, 2022</description>
2260 <content:encoded><![CDATA[<p>Author(s): Francis-Yan Cyr-Racine, Fei Ge, and Lloyd Knox</p><p>A discrepancy between different measurements of the Hubble constant could be removed by the existence of an exotic form of dark matter.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.201301.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 128, 201301] Published Wed May 18, 2022</p>]]></content:encoded>
2261 <dc:title>Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant</dc:title>
2262 <dc:creator>Francis-Yan Cyr-Racine, Fei Ge, and Lloyd Knox</dc:creator>
2263 <dc:date>2022-05-18T10:00:00+00:00</dc:date>
2264 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2265 <dc:source>Phys. Rev. Lett. 128, 201301 (2022)</dc:source>
2266 <dc:type>article</dc:type>
2267 <dc:identifier>doi:10.1103/PhysRevLett.128.201301</dc:identifier>
2268 <prism:doi>10.1103/PhysRevLett.128.201301</prism:doi>
2269 <prism:publicationName>Physical Review Letters</prism:publicationName>
2270 <prism:volume>128</prism:volume>
2271 <prism:number>20</prism:number>
2272 <prism:publicationDate>2022-05-18T10:00:00+00:00</prism:publicationDate>
2273 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.201301</prism:url>
2274 <prism:startingPage>201301</prism:startingPage>
2275 <dc:subject>Gravitation and Astrophysics</dc:subject>
2276 <prism:section>Gravitation and Astrophysics</prism:section>
2277 </item>
2278 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.201101">
2279 <title>Monopoles from an Atmospheric Fixed Target Experiment</title>
2280 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.201101</link>
2281 <description>Author(s): Syuhei Iguro, Ryan Plestid, and Volodymyr Takhistov<br/><p>Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the …</p><br/>[Phys. Rev. Lett. 128, 201101] Published Tue May 17, 2022</description>
2282 <content:encoded><![CDATA[<p>Author(s): Syuhei Iguro, Ryan Plestid, and Volodymyr Takhistov</p><p>Magnetic monopoles have a long history of theoretical predictions and experimental searches, carrying direct implications for fundamental concepts such as electric charge quantization. We analyze in detail for the first time magnetic monopole production from collisions of cosmic rays bombarding the …</p><br/><p>[Phys. Rev. Lett. 128, 201101] Published Tue May 17, 2022</p>]]></content:encoded>
2283 <dc:title>Monopoles from an Atmospheric Fixed Target Experiment</dc:title>
2284 <dc:creator>Syuhei Iguro, Ryan Plestid, and Volodymyr Takhistov</dc:creator>
2285 <dc:date>2022-05-17T10:00:00+00:00</dc:date>
2286 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2287 <dc:source>Phys. Rev. Lett. 128, 201101 (2022)</dc:source>
2288 <dc:type>article</dc:type>
2289 <dc:identifier>doi:10.1103/PhysRevLett.128.201101</dc:identifier>
2290 <prism:doi>10.1103/PhysRevLett.128.201101</prism:doi>
2291 <prism:publicationName>Physical Review Letters</prism:publicationName>
2292 <prism:volume>128</prism:volume>
2293 <prism:number>20</prism:number>
2294 <prism:publicationDate>2022-05-17T10:00:00+00:00</prism:publicationDate>
2295 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.201101</prism:url>
2296 <prism:startingPage>201101</prism:startingPage>
2297 <dc:subject>Gravitation and Astrophysics</dc:subject>
2298 <prism:section>Gravitation and Astrophysics</prism:section>
2299 </item>
2300 <item rdf:about="http://link.aps.org/doi/10.1103/PhysRevLett.128.191102">
2301 <title>Evidence of Large Recoil Velocity from a Black Hole Merger Signal</title>
2302 <link>http://link.aps.org/doi/10.1103/PhysRevLett.128.191102</link>
2303 <description>Author(s): Vijay Varma, Sylvia Biscoveanu, Tousif Islam, Feroz H. Shaik, Carl-Johan Haster, Maximiliano Isi, Will M. Farr, Scott E. Field, and Salvatore Vitale<br/><p>Analysis of the gravitational waves from a black hole merger suggests that the final black hole received a kick that will send it out of its galaxy.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.191102.png" width="200" height=\"100\"><br/>[Phys. Rev. Lett. 128, 191102] Published Thu May 12, 2022</description>
2304 <content:encoded><![CDATA[<p>Author(s): Vijay Varma, Sylvia Biscoveanu, Tousif Islam, Feroz H. Shaik, Carl-Johan Haster, Maximiliano Isi, Will M. Farr, Scott E. Field, and Salvatore Vitale</p><p>Analysis of the gravitational waves from a black hole merger suggests that the final black hole received a kick that will send it out of its galaxy.</p><img src="//cdn.journals.aps.org/journals/PRL/key_images/10.1103/PhysRevLett.128.191102.png" width="200" height=\"100\"><br/><p>[Phys. Rev. Lett. 128, 191102] Published Thu May 12, 2022</p>]]></content:encoded>
2305 <dc:title>Evidence of Large Recoil Velocity from a Black Hole Merger Signal</dc:title>
2306 <dc:creator>Vijay Varma, Sylvia Biscoveanu, Tousif Islam, Feroz H. Shaik, Carl-Johan Haster, Maximiliano Isi, Will M. Farr, Scott E. Field, and Salvatore Vitale</dc:creator>
2307 <dc:date>2022-05-12T10:00:00+00:00</dc:date>
2308 <dc:rights>Personal use only, all commercial or other reuse prohibited</dc:rights>
2309 <dc:source>Phys. Rev. Lett. 128, 191102 (2022)</dc:source>
2310 <dc:type>article</dc:type>
2311 <dc:identifier>doi:10.1103/PhysRevLett.128.191102</dc:identifier>
2312 <prism:doi>10.1103/PhysRevLett.128.191102</prism:doi>
2313 <prism:publicationName>Physical Review Letters</prism:publicationName>
2314 <prism:volume>128</prism:volume>
2315 <prism:number>19</prism:number>
2316 <prism:publicationDate>2022-05-12T10:00:00+00:00</prism:publicationDate>
2317 <prism:url>http://link.aps.org/doi/10.1103/PhysRevLett.128.191102</prism:url>
2318 <prism:startingPage>191102</prism:startingPage>
2319 <dc:subject>Gravitation and Astrophysics</dc:subject>
2320 <prism:section>Gravitation and Astrophysics</prism:section>
2321 </item>
2322