%\documentstyle[11pt]{article} %\begin{document} %\setcounter{page}{60} \newpage \begin{center} \Large{\bf IX. RADIATION DIFFUSION} \addcontentsline{toc}{section}{\protect\numberline{IX.}{\bf ~Radiation Diffusion}} \end{center} \vspace*{5mm} \noindent \rm For both nonequilibrium and equilibrium diffusion we set all Eddington factors $f_{k} \equiv \frac{1}{3}$, and set the surface flux Eddington factor $g_{N} \equiv \frac{1}{2}$ (consistent with isotropic radiation). Further we drop the time derivative and velocity-dependent terms. \begin{flushleft} \large {\bf A. Nonequilibrium Diffusion} \rm (Flux-Limited)\\ \addcontentsline{toc}{subsection}{\protect\numberline{IX.A.}{ ~Nonequilibrium Diffusion}} \vspace*{5mm} \rm Replace (RM2) with the flux-limited diffusion diffusion equation\\ \vspace*{3mm} $F^{n+1}_{k} - \frac{c}{3}(r^{n+1}_{k})^{\mu}(E^{n+1}_{k-1}-E^{n+1}_{k})/D^{n+1}_{k} = 0 \hfill \rm (RD1) $\\ \vspace*{3mm} \rm where\\ \vspace*{3mm} $ D^{n+1}_{k} \equiv <\chi>^{n+1}_{k}\frac{1}{2}[\rho^{n+1}_{k-1}$\tt dvoln(k-1)$ + \rho^{n+1}_{k}$\tt dvoln(k)]\\ \hfill $+ \frac{2 \lambda}{3}(r^{n+1}_{k})^{\mu}|E^{n+1}_{k-1} - E^{n+1}_{k}|/(E^{n+1}_{k-1} + E^{n+1}_{k})$ \rm \hspace{5mm}(RD2)\\ \rm and\\ $$\frac{1}{<\chi>^{n+1}_{k}} \equiv \frac{1}{2}\left( \frac{1}{\chi^{n+1}_{k-1}} + \frac{1}{\chi^{n+1}_{k}} \right) \hspace{58mm} \rm (RD3) $$\\ \rm For convenience write (RD2) as\\ \vspace*{2mm} $ D^{n+1}_{k} = \alpha^{n+1}_{k} + \frac{2}{3}\lambda\beta^{n+1}_{k}$\hfill \rm (RD4)\\ \end{flushleft} \noindent \rm For no flux-limiting set $\lambda = 0$, and for flux limiting set $\lambda = 1$. Boundary conditions (BC22) - (BC25), and (BC35) - (BC36) remain unchanged. \vspace*{3mm} {\flushleft\large{\bf B. Equilibrium Diffusion}}\\ \addcontentsline{toc}{subsection}{\protect\numberline{IX.B.}{ ~Equilibrium Diffusion}} \vspace*{2mm} \noindent \rm To implement equilibrium diffusion, in addition to all replacements in equation (RD2) described above, replace (RE2) with\\ \vspace*{2mm} {\flushleft $E^{n+1}_{k} = a_{R}(T^{n+1}_{k})^{4}$ \hfill \rm (RD5)}\\ \newpage \vspace*{5mm} {\flushleft \large{\bf C. Linearization}}\\ \addcontentsline{toc}{subsection}{\protect\numberline{IX.C.}{ ~Linearization}} \vspace*{2mm} \begin{center} \it(1) Nonequilibrium Diffusion \addcontentsline{toc}{subsubsection}{\protect\numberline{IX.C.1.}{\sl ~Nonequilibrium Diffusion}} \end{center} \noindent \rm Define \\ {\flushleft \tt chdvol(k)$\equiv \alpha^{n+1}_{k}=\frac{1}{2}<\chi>^{n+1}_{k}[\rho^{n+1}_{k-1}$\tt dvoln(k-1)$+\rho^{n+1}_{k}$\tt dvoln(k)]\,\rm(RD6) }\\ \vspace*{2mm} {\flushleft \tt chdvolrm(k)$\equiv \frac{\partial\alpha^{n+1}_{k}}{\partial lnr^{n+1}_{k-1}} = - \frac{1}{2} <\chi>^{n+1}_{k}$\tt rmup1n(k-1)$\rho^{n+1}_{k-1}$\hfill \rm (RD7) }\\ \vspace*{2mm} {\flushleft \tt chdvolr0(k)$\equiv \frac{\partial\alpha^{n+1}_{k}}{\partial lnr^{n+1}_{k}} = \hspace{3mm} \frac{1}{2} <\chi>^{n+1}_{k}$\tt rmup1n(k\hspace{2mm})$(\rho^{n+1}_{k-1}-\rho^{n+1}_{k})$\hfill \rm (RD8) }\\ \vspace*{2mm} {\flushleft \tt chdvolrp(k)$\equiv \frac{\partial\alpha^{n+1}_{k}}{\partial lnr^{n+1}_{k+1}} = \hspace{3mm} \frac{1}{2} <\chi>^{n+1}_{k}$\tt rmup1n(k+1)$\rho^{n+1}_{k}$\hfill \rm (RD9) }\\ \vspace*{2mm} {\flushleft $ {\tt chdvoldm(k)} \equiv \frac{\partial\alpha^{n+1}_{k}}{\partial ln\rho^{n+1}_{k-1}} = $ \hfill}\\ {\flushright \hfill $\frac{1}{2}<\chi>^{n+1}_{k}{\tt dvoln(k)}\rho^{n+1}_{k-1} + \frac{1}{2}{\tt chdvol(k)} \frac{<\chi>^{n+1}_{k}}{\chi^{n+1}_{k-1}}\left(\frac{\partial ln\chi}{\partial ln\rho}\right)^{n+1}_{k-1} \hspace{5mm} \rm (RD10) $}\\ \vspace*{2mm} {\flushleft $ {\tt chdvold0(k)} \equiv \frac{\partial\alpha^{n+1}_{k}}{\partial ln\rho^{n+1}_{k}} = $ \hfill}\\ {\flushright \hfill $\frac{1}{2}<\chi>^{n+1}_{k}{\tt dvoln(k)}\rho^{n+1}_{k} + \frac{1}{2}{\tt chdvol(k)} \frac{<\chi>^{n+1}_{k}}{\chi^{n+1}_{k}}\left(\frac{\partial ln\chi}{\partial ln\rho}\right)^{n+1}_{k} \hspace{5mm} \rm (RD11) $}\\ \vspace*{2mm} {\flushleft $ {\tt chdvoltm(k)} \equiv \frac{\partial\alpha^{n+1}_{k}}{\partial lnT^{n+1}_{k-1}} = \frac{1}{2} {\tt chdvol(k)} \frac{<\chi>^{n+1}_{k}}{\chi^{n+1}_{k-1}}\left(\frac{\partial ln\chi}{\partial lnT}\right)^{n+1}_{k-1} \hfill \rm (RD12) $}\\ \vspace*{2mm} {\flushleft $ {\tt chdvolt0(k)} \equiv \frac{\partial\alpha^{n+1}_{k}}{\partial lnT^{n+1}_{k}} = \frac{1}{2} {\tt chdvol(k)} \frac{<\chi>^{n+1}_{k}}{\chi^{n+1}_{k}}\left(\frac{\partial ln\chi}{\partial lnT}\right)^{n+1}_{k} \hfill \rm (RD13) $}\\ \vspace*{2mm} \noindent \rm Further define \\ \vspace*{2mm} {\flushleft \tt elim(k)$ = \frac{2}{3}\lambda\beta^{n+1}_{k} = \frac{2}{3}\lambda\,${\tt rmun(k)}$|E^{n+1}_{k-1} - E^{n+1}_{k}| / (E^{n+1}_{k-1} + E^{n+1}_{k})$ \hfill \rm (RD14)} \\ \vspace*{2mm} {\flushleft \tt elimr0(k)$ = \frac{2}{3}\lambda \partial\beta^{n+1}_{k} /\partial r^{n+1}_{k} = \mu$ \tt elim(k) \hfill \rm(RD15)} \\ \vspace*{2mm} {\flushleft \tt elimem(k)$ = \frac{2}{3}\lambda \partial \beta^{n+1}_{k} /\partial E^{n+1}_{k-1} $}\\ $$\hspace{22mm} = - \frac{[{\tt elim(k)} E^{n+1}_{k-1} + \frac{2}{3}\lambda\,{\tt rmun(k)}{\rm sgn}(E^{n+1}_{k-1} - E^{n+1}_{k})]}{(E^{n+1}_{k-1} + E^{n+1}_{k})} \hspace{5mm} \rm (RD16) $$\\ \vspace*{2mm} {\flushleft \tt elime0(k)$ = \frac{2}{3}\lambda \partial \beta^{n+1}_{k} /\partial E^{n+1}_{k} $}\\ $$\hspace{22mm} = - \frac{[{\tt elim(k)} E^{n+1}_{k} + \frac{2}{3}\lambda\,{\tt rmun(k)}{\rm sgn}(E^{n+1}_{k-1} - E^{n+1}_{k})]}{(E^{n+1}_{k-1} + E^{n+1}_{k})} \hspace{5mm} \rm (RD17) $$\\ \vspace*{2mm} \noindent \rm and \\ {\flushleft \tt fd(k)\hspace{8mm}$\equiv F^{n+1}_{k}D^{n+1}_{k} \hspace{11mm}= \hspace{3mm}(c/3)\ $\tt rmun(k)$(E^{n+1}_{k-1} - E^{n+1}_{k}) \hfill \rm (RD18)$}\\ \vspace*{2mm} {\flushleft \tt dfddem(k)$\equiv \partial$\tt fd(k)$/\partial ln E^{n+1}_{k-1} = \hspace{3mm}(c/3)\ $\tt rmun(k)$E^{n+1}_{k-1} \hfill \rm (RD19)$}\\ \vspace*{2mm} {\flushleft \tt dfdde0(k)$\equiv \partial$\tt fd(k)$/\partial ln E^{n+1}_{k} = -(c/3)\ $\tt rmun(k)$E^{n+1}_{k} \hfill \rm (RD20)$}\\ \vspace*{2mm} {\flushleft \tt dfddr0(k)$\equiv \partial$\tt fd(k)$/\partial lnr^{n+1}_{k} \hspace{2mm} = \hspace{3mm} \mu\ $\tt fd(k)\hfill \rm (RD21)}\\ \vspace*{2mm} {\flushleft \tt denom(k)$\hspace{1mm}\equiv 1 / D^{n+1}_{k} = 1 / ($\tt chdvol(k)$+$elim(k)$+10^{-30})$ \hfill \rm (RD22)}\\ \vspace*{2mm} \noindent \rm Then \\ \vspace*{2mm} {\flushleft \tt dif(k)$\hspace{8mm}= F^{n+1}_{k} \hspace{18mm} = \hspace{3mm}$\tt denom(k)fd(k) \hfill \rm (RD23)}\\ \vspace*{2mm} {\flushleft \tt ddifdrm(k)$= \partial F^{n+1}_{k}/\partial lnr^{n+1}_{k-1} = -$\tt denom(k)dif(k)chdvolrm(k) \hfill \rm (RD24)}\\ \vspace*{2mm} {\flushleft \tt ddifdr0(k)$= \partial F^{n+1}_{k}/\partial lnr^{n+1}_{k}$}\\ {\flushright $=\ $\tt denom(k)\{dfddr0(k)$-$\tt dif(k)[chdvolr0(k)$+$\tt elimr0(k)]\} \hspace{9mm}\rm (RD25)}\\ \vspace*{2mm} {\flushleft \tt ddifdrp(k)$= \partial F^{n+1}_{k}/\partial lnr^{n+1}_{k+1} = -$\tt denom(k)dif(k)chdvolrp(k) \hfill \rm (RD26)}\\ \vspace*{2mm} {\flushleft \tt ddifddm(k)$= \partial F^{n+1}_{k}/\partial ln\rho^{n+1}_{k-1} = -$\tt denom(k)dif(k)chdvoldm(k) \hfill \rm (RD27)}\\ \vspace*{2mm} {\flushleft \tt ddifdd0(k)$= \partial F^{n+1}_{k}/\partial ln\rho^{n+1}_{k} = -$\tt denom(k)dif(k)chdvold0(k) \hfill \rm (RD28)}\\ \vspace*{2mm} {\flushleft \tt ddifdtm(k)$= \frac{\partial F^{n+1}_{k}}{\partial lnT^{n+1}_{k-1}} \hfill = -$\tt denom(k)dif(k)chdvoltm(k) \rm (RD29) }\\ \vspace*{2mm} {\flushleft \tt ddifdt0(k)$= \frac{\partial F^{n+1}_{k}}{\partial lnT^{n+1}_{k}} \hfill = -$\tt denom(k)dif(k)chdvolt0(k) \rm (RD30) }\\ \vspace*{2mm} {\flushleft \tt ddifdem(k)$= \frac{\partial F^{n+1}_{k}}{\partial lnE^{n+1}_{k-1}} = $\tt denom(k)[dfddem(k)$-$\tt dif(k)elimem(k)]\hspace{2mm}\rm (RD31)}\\ \vspace*{2mm} {\flushleft \tt ddifde0(k)$= \frac{\partial F^{n+1}_{k}}{\partial lnE^{n+1}_{k}} = $\tt denom(k)[dfdde0(k)$-$\tt dif(k)elime0(k)]\hspace{2mm}\rm (RD32)}\\ \vspace*{2mm} \noindent \rm Then\\ \vspace*{2mm} {\flushleft \tt em1(if,jr):$-$\tt ddifdrm(k) \hfill \rm (RD33)}\\ \vspace*{2mm} {\flushleft \tt e00(if,jr):$-$\tt ddifdr0(k) \hfill \rm (RD34)}\\ \vspace*{2mm} {\flushleft \tt ep1(if,jr):$-$\tt ddifdrp(k) \hfill \rm (RD35)}\\ \vspace*{2mm} {\flushleft \tt em1(if,jd):$-$\tt ddifddm(k) \hfill \rm (RD36)}\\ \vspace*{2mm} {\flushleft \tt e00(if,jd):$-$\tt ddifdd0(k) \hfill \rm (RD37)}\\ \vspace*{2mm} {\flushleft \tt em1(if,jt):$-$\tt ddifdtm(k) \hfill \rm (RD38)}\\ \vspace*{2mm} {\flushleft \tt e00(if,jt):$-$\tt ddifdt0(k) \hfill \rm (RD39)}\\ \vspace*{2mm} {\flushleft \tt em1(if,je):$-$\tt ddifdem(k) \hfill \rm (RD40)}\\ \vspace*{2mm} {\flushleft \tt e00(if,je):$-$\tt ddifde0(k) \hfill \rm (RD41)}\\ \vspace*{2mm} {\flushleft \tt e00(if,jf):\hspace{3mm}frnom(k) \hfill \rm (RD42)}\\ \vspace*{2mm} \noindent \rm Finally \vspace*{2mm} {\flushleft $-$\ \tt rhs(if)\ $= F^{n+1}_{k} -$\tt dif(k) \hfill \rm (RD43) }\\ \vspace*{2mm} \begin{center} \it(2) Equilibrium Diffusion \addcontentsline{toc}{subsubsection}{\protect\numberline{IX.C.2.}{\sl ~Equilibrium Diffusion}} \end{center} \vspace*{2mm} \tt e00(if,jt):$ - 4a_{R}(T^{n+1}_{k})^{4}$ \hfill \rm (RD44)\\ \vspace*{2mm} \tt e00(if,je):$\ E^{n+1}_{k} $ \hfill \rm (RD45)\\ \vspace*{2mm} {\flushleft $-$\ \tt rhs(ie)\,$= E^{n+1}_{k} - 4a_{R}(T^{n+1}_{k})^{4}$ \hfill \rm (RD46)}\\ %\end{document} .