%\documentstyle[11pt]{article} %\begin{document} %\setcounter{page}{39} \newpage \begin{center} \Large{\bf VI. RADIATING FLUID ENERGY}\\ \addcontentsline{toc}{section}{\protect\numberline{VI.}{\bf ~Radiating Fluid Energy}} \end{center} \begin{flushleft} \vspace*{3mm} \large{\bf A. Differential Equation}\\ \addcontentsline{toc}{subsection}{\protect\numberline{VI.A.}{ ~Differential Equation}} \vspace*{2mm} \[ \frac{d}{dt}\left[\left(e +\frac{E}{\rho}\right)\rho\Delta V\right] - \Delta\left[\frac{dm}{dt}\left(e +\frac{E}{\rho}\right) -r^{\mu}F\right] \hspace{44mm} \]\\ \[ \hspace{12mm}+(p+P)\Delta(r^{\mu}u) + (E-3P)\frac{u}{r}\Delta V = \Delta\left(r^{\mu}\sigma_{e}\frac{\Delta e}{\Delta r}\right) + \epsilon_{Q}\Delta V \hspace{5mm} \rm (FE1) \]\\ \vspace*{2mm} \rm where $\mu =$ 0 or 2, and\\ \vspace*{2mm} \[ \epsilon_{Q} \equiv \frac{4}{3}\mu_{Q}\rho\left(\frac{\Delta u}{\Delta r} - \frac{\mu}{2} <\frac{u}{r}> \right)^{2} \hspace{60mm} \rm (FE2) \]\\ \vspace*{2mm} \rm Note that $\epsilon_{Q}$ is cell centered, as is $\mu_{Q}$.\\ \vspace*{5mm} \large{\bf B. Difference Equation}\\ \addcontentsline{toc}{subsection}{\protect\numberline{VI.B.}{ ~Difference Equation}} \vspace*{2mm} \rm For $(k = 2, \ldots, N-1),$ \vspace*{2mm} $\hspace{3mm}\left[ (\rho_{k}^{n+1}e_{k}^{n+1}+E^{n+1}_{k})\Delta V^{n+1}_{k}-(\rho_{k}^{n}e_{k}^{n}+E^{n}_{k})\Delta V^{n}_{k} \right]/ dt \hfill $\\ \vspace*{4mm} $ -[(m_{k+1}^{n+1}-m_{k+1}^{n})(\overline{e+\frac{E}{\rho}})_{k+1} -(m_{k}^{n+1}-m_{k}^{n})(\overline{e+\frac{E}{\rho}})_{k}] /dt $\\ \vspace*{4mm} $+(r_{k+1}^{n+\theta})^{\mu}F^{n+\theta}_{k+1} -(r_{k}^{n+\theta})^{\mu}F^{n+\theta}_{k}$\\ \vspace*{4mm} $+(p^{n+\theta}_{k}+f^{n+\theta}_{k}E^{n+\theta}_{k})[(r_{k+1}^{n+\theta})^{\mu}u_{k+1}^{n+\theta}-(r_{k}^{n+\theta})^{\mu}u_{k}^{n+\theta}]$\\ \vspace*{2mm} \[+\frac{\mu}{4}(1-3f_{k}^{n+\theta})E^{n+\theta}_{k}\left( \frac{u^{n+\theta}_{k+1}}{r^{n+\theta}_{k+1}} + \frac{u^{n+\theta}_{k}}{r^{n+\theta}_{k}} \right)\Delta V^{n+\theta}_{k} \hspace{50mm} \]\\ \vspace*{2mm} \[-\sigma_{e}\left[(r^{n+\theta}_{k+1})^{\mu}(\rho^{n+\theta}_{k}+\rho^{n+\theta}_{k+1})\left(\frac{e^{n+\theta}_{k+1}-e^{n+\theta}_{k}}{r^{n+\theta}_{k+2}-r^{n+\theta}_{k}}\right)\right. \hspace{51mm}\]\\ \[\hspace{54mm} \left. -(r^{n+\theta}_{k})^{\mu}(\rho^{n+\theta}_{k-1}+\rho^{n+\theta}_{k})\left(\frac{e^{n+\theta}_{k}-e^{n+\theta}_{k-1}}{r^{n+\theta}_{k+1}-r^{n+\theta}_{k-1}}\right)\right] \]\\ \vspace*{2mm} \[ -\frac{4}{3}(\mu_{Q})^{n+\theta}_{k}\rho^{n+\theta}_{k} \left[ \frac{u^{n+\theta}_{k+1} - u^{n+\theta}_{k}}{r^{n+\theta}_{k+1} - r^{n+\theta}_{k}}-\frac{\mu}{2} \left( \frac{u^{n+\theta}_{k+1}}{r^{n+\theta}_{k+1}} + \frac{u^{n+\theta}_{k}}{r^{n+\theta}_{k}} \right) \right]^{2}\Delta V^{n+\theta}_{k} \hspace{20mm} \]\\ \vspace*{2mm} $=0$ \hfill \rm (FE3)\\ \end{flushleft} \vspace*{2mm} \noindent Equation (FE3) provides $N-2$ relations connecting the the energy density of the radiating fluid at $N$ gridpoints. We thus require two boundary conditions. \begin{flushleft} \vspace*{5mm} \large{\bf C. Linearization}\\ \addcontentsline{toc}{subsection}{\protect\numberline{VI.C.}{ ~Linearization}} \vspace*{2mm} \rm Calculating matrix elements we find:\\ \end{flushleft} \vspace*{2mm} \begin{center} \it(1) Time Derivative \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.1.}{\sl ~Time Derivative}} \end{center} \begin{flushleft} \vspace*{2mm} {\tt e00(it,jr):}$-(\rho_{k}^{n+1}e_{k}^{n+1}+E_{k}^{n+1})\,${\tt rmup1n(k\hspace{4mm})}$/dt \hfill \rm (FE4)$\\ \vspace*{2mm} {\tt ep1(it,jr):}$\hspace{3mm}(\rho_{k}^{n+1}e_{k}^{n+1}+E_{k}^{n+1})\,${\tt rmup1n(k+1)}$/dt \hfill \rm (FE5)$\\ \vspace*{2mm} {\tt e00(it,jd):}$\hspace{5mm}\rho_{k}^{n+1}e_{k}^{n+1}[1+(\partial ln e/\partial ln \rho)_{k}^{n+1}]\,${\tt dvoln(k)}$/dt \hfill \rm (FE6)$\\ \vspace*{2mm} {\tt e00(it,jt):}$\hspace{5mm}\rho_{k}^{n+1}e_{k}^{n+1}\hspace{8mm}(\partial ln e/\partial ln T)_{k}^{n+1}\hspace{2mm}${\tt dvoln(k)}$/dt \hfill \rm (FE7)$\\ \vspace*{2mm} {\tt e00(it,je):}$\hspace{5mm}E_{k}^{n+1}${\tt dvoln(k)}$/dt \hfill \rm (FE8)$\\ \end{flushleft} \vspace*{2mm} \begin{center} \it(2) Advection \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.2.}{\sl ~Advection}} \end{center} \vspace*{2mm} \noindent The quantities needed to calculate the derivatives of the advection term are generated in the subroutine {\tt advectc}. As before, denote the advected quantity as $q$. The inputs required by the subroutine for $(k=0,$ $\ldots,$ $N+2)$ are: \[ \begin{array}{lll} {\tt q\ \ \ (k)}&=\hspace{3mm} q_{k}^{n+1} &\equiv (e+\frac{E}{\rho})^{n+1}_{k} \\ {\tt qo\ \ (k)}&=\hspace{3mm} q_{k}^{n} &\equiv (e+\frac{E}{\rho})^{n}_{k} \\ {\tt qso\ (k)}&= Dq_{k}^{n} & = \rm monotonized\ slope\ at\ old\ time\\ {\tt flow(k)}&= -{\tt dmdt(k)}&\rm \hspace{4mm} direction\ of\ flow\ at\ interface\ k\\ \end{array} \] \begin{flushleft} \rm Then, proceeding as in (C20) - (C36), and using the facts that\\ \[ \left( \frac{\partial ln q}{\partial lnE} \right)^{n+1}_{k} = \left(\frac{E}{\rho}\right)^{n+1}_{k}/\left(e+\frac{E}{\rho}\right)^{n+1}_{k} ={\tt dlqdle(k)} \hspace{28mm} \rm (FE9) \] \vspace*{2mm} \[ \left( \frac{\partial ln q}{\partial lnT} \right)^{n+1}_{k} = \left(e\frac{\partial ln e}{\partial ln T}\right)^{n+1}_{k}/\left(e+\frac{E}{\rho}\right)^{n+1}_{k} ={\tt dlqdlt(k)} \hspace{20mm}\rm (FE10)\] \vspace*{2mm} \[ \left( \frac{\partial ln q}{\partial ln\rho} \right)^{n+1}_{k} = \left(e\frac{\partial ln e}{\partial ln \rho}-\frac{E}{\rho}\right)^{n+1}_{k}/\left(e+\frac{E}{\rho}\right)^{n+1}_{k} ={\tt dlqdld(k)} \hspace{12mm} \rm (FE11) \] \vspace*{2mm} \rm we get\\ \vspace*{2mm} \tt dqbdlem2(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln E^{n+1}_{k-2} =\ $\tt dqbdlqm2(k) dlqdle(k-2) \hfill \rm (FE12)\\ \vspace*{2mm} \tt dqbdlem1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln E^{n+1}_{k-1} =\ $\tt dqbdlqm1(k) dlqdle(k-1) \hfill \rm (FE13)\\ \vspace*{2mm} \tt dqbdle00(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln E^{n+1}_{k} =\ $\tt dqbdlq00(k) dlqdle(k\hspace{4mm}) \hfill \rm (FE14)\\ \vspace*{2mm} \tt dqbdlep1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln E^{n+1}_{k+1} =\ $\tt dqbdlqp1(k) dlqdle(k+1) \hfill \rm (FE15)\ \vspace*{2mm} \tt dqbdltm2(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln T^{n+1}_{k-2} =\ $\tt dqbdlqm2(k) dlqdlt(k-2) \hfill \rm (FE16)\\ \vspace*{2mm} \tt dqbdltm1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln T^{n+1}_{k-1} =\ $\tt dqbdlqm1(k) dlqdlt(k-1) \hfill \rm (FE17)\\ \vspace*{2mm} \tt dqbdlt00(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln T^{n+1}_{k} =\ $\tt dqbdlq00(k) dlqdlt(k\hspace{4mm}) \hfill \rm (FE18)\\ \vspace*{2mm} \tt dqbdltp1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln T^{n+1}_{k+1} =\ $\tt dqbdlqp1(k) dlqdlt(k+1) \hfill \rm (FE19)\\ \vspace*{2mm} \tt dqbdldm2(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln \rho^{n+1}_{k-2} =\ $\tt dqbdlqm2(k) dlqdld(k-2) \hfill \rm (FE20)\\ \vspace*{2mm} \tt dqbdldm1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln \rho^{n+1}_{k-1} =\ $\tt dqbdlqm1(k) dlqdld(k-1) \hfill \rm (FE21)\\ \vspace*{2mm} \tt dqbdld00(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln \rho^{n+1}_{k} =\ $\tt dqbdlq00(k) dlqdld(k\hspace{4mm}) \hfill \rm (FE22)\\ \vspace*{2mm} \tt dqbdldp1(k)$\equiv \partial(\delta\overline{q}_{k})/\partial ln \rho^{n+1}_{k+1} =\ $\tt dqbdlqp1(k) dlqdld(k+1) \hfill \rm (FE23)\\ \vspace*{2mm} \rm Thus\\ \vspace*{2mm} \tt e00(it,jm):$\hspace{3mm}\overline{q}_{k\hspace{4mm}}m_{k\hspace{4mm}}^{n+1}/dt$ \hfill \rm(FE24) \vspace*{2mm} \tt ep1(it,jm):$-\overline{q}_{k+1}m_{k+1}^{n+1}/dt$ \hfill \rm(FE25) \vspace*{2mm} \tt em2(it,jd):dmdt(k)dqbdldm2(k)\hfill\rm(FE26)\\ \vspace*{2mm} \tt em1(it,jd):dmdt(k)dqbdldm1(k)$-$dmdt(k+1)dqbdldm2(k+1)\hfill\rm(FE27)\\ \vspace*{2mm} \tt e00(it,jd):dmdt(k)dqbdld00(k)$-$dmdt(k+1)dqbdldm1(k+1)\hfill\rm(FE28)\\ \vspace*{2mm} \tt ep1(it,jd):dmdt(k)dqbdldp1(k)$-$dmdt(k+1)dqbdld00(k+1)\hfill\rm(FE29)\\ \vspace*{2mm} \tt ep2(it,jd):\hspace{36mm}$-$dmdt(k+1)dqbdldp1(k+1)\hfill\rm(FE30)\\ \vspace*{2mm} \tt em2(it,jt):dmdt(k)dqbdltm2(k)\hfill\rm(FE31)\\ \vspace*{2mm} \tt em1(it,jt):dmdt(k)dqbdltm1(k)$-$dmdt(k+1)dqbdltm2(k+1)\hfill\rm(FE32)\\ \vspace*{2mm} \tt e00(it,jt):dmdt(k)dqbdlt00(k)$-$dmdt(k+1)dqbdltm1(k+1)\hfill\rm(FE33)\\ \vspace*{2mm} \tt ep1(it,jt):dmdt(k)dqbdltp1(k)$-$dmdt(k+1)dqbdlt00(k+1)\hfill\rm(FE34)\\ \vspace*{2mm} \tt ep2(it,jt):\hspace{36mm}$-$dmdt(k+1)dqbdltp1(k+1)\hfill\rm(FE35)\\ \vspace*{2mm} \tt em2(it,je):dmdt(k)dqbdlem2(k)\hfill\rm(FE36)\\ \vspace*{2mm} \tt em1(it,je):dmdt(k)dqbdlem1(k)$-$dmdt(k+1)dqbdetm2(k+1)\hfill\rm(FE37)\\ \vspace*{2mm} \tt e00(it,je):dmdt(k)dqbdle00(k)$-$dmdt(k+1)dqbdlem1(k+1)\hfill\rm(FE38)\\ \vspace*{2mm} \tt ep1(it,je):dmdt(k)dqbdlep1(k)$-$dmdt(k+1)dqbdle00(k+1)\hfill\rm(FE39)\\ \vspace*{2mm} \tt ep2(it,je):\hspace{36mm}$-$dmdt(k+1)dqbdlep1(k+1)\hfill\rm(FE40)\\ \end{flushleft} \begin{center} \vspace*{2mm} \it(3) Flux Divergence \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.3.}{\sl ~Flux Divergence}} \end{center} \noindent \rm These matrix elements are the same as those given for the radiation energy equation, (RE6) -- (RE9), with the index {\tt ie} replaced by the index {\tt it}. \vspace*{2mm} \begin{center} \it(4) Work \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.4.}{\sl ~Work}} \end{center} \begin{flushleft} \vspace*{2mm} \tt e00(it,jr):$-\theta\mu(p_{k}^{n+\theta}+f_{k}^{n+\theta}E_{k}^{n+\theta})(r_{k}^{n+1}/r_{k}^{n+\theta})$\,\tt rmu(k\hspace{4mm})$u_{k}^{n+\theta}$ \hfill \rm(FE41)\\ \vspace*{2mm} \tt ep1(it,jr):$\hspace{3mm}\theta\mu(p_{k}^{n+\theta}+f_{k}^{n+\theta}E_{k}^{n+\theta})(r_{k+1}^{n+1}/r_{k+1}^{n+\theta})$\,\tt rmu(k+1)$u_{k+1}^{n+\theta}$ \hfill \rm(FE42)\\ \vspace*{2mm} \tt e00(it,jd):$\hspace{3mm}\theta p_{k}^{n+1}(\partial ln p/\partial ln\rho)_{k}^{n+1}\,[$\tt rmu(k+1)$u_{k+1}^{n+\theta}-$\tt rmu(k)$u_{k}^{n+\theta}$] \hfill \rm(FE43)\\ \vspace*{2mm} \tt e00(it,ju):$-\theta(p_{k}^{n+\theta}+f_{k}^{n+\theta}E_{k}^{n+\theta})$\,rmu(k\hspace{4mm})unom(k\hspace{4mm}) \hfill \rm(FE44)\\ \vspace*{2mm} \tt ep1(it,ju):$\hspace{3mm}\theta(p_{k}^{n+\theta}+f_{k}^{n+\theta}E_{k}^{n+\theta})$\,rmu(k+1)unom(k+1) \hfill \rm(FE45)\\ \vspace*{2mm} \tt e00(it,jt):$\hspace{3mm}\theta p_{k}^{n+1}(\partial ln p/\partial ln T)_{k}^{n+1}[$\tt rmu(k+1)$u_{k+1}^{n+\theta}-$\tt rmu(k)$u_{k}^{n+\theta}$] \hfill \rm(FE46)\\ \vspace*{2mm} \tt e00(it,je):$\hspace{3mm}\theta f_{k}^{n+\theta}E_{k}^{n+1}\,[$\tt rmu(k+1)$u_{k+1}^{n+\theta}-$\tt rmu(k)$u_{k}^{n+\theta}$] \hfill \rm(FE47)\\ \end{flushleft} \newpage \begin{center} \vspace*{2mm} \it(5) Anisotropy \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.5.}{\sl ~Anisotropy}} \end{center} \noindent These matrix elements are the same as those given for the radiation energy equation, (RE15) -- (RE19), with the index {\tt ie} replaced by the index {\tt it}. \vspace*{2mm} \begin{center} \it(6) Diffusion \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.6.}{\sl ~Diffusion}} \end{center} \noindent \rm The quantities needed to calculate the derivatives of the energy diffusion term are generated in subroutine {\tt diffuse} in the same way as the mass diffusion in the continuity equation ({\it q.v.}). In this case the inputs required are {\tt qd(k)} $=$ $e_{k}^{n+\theta}$ and {\tt qdn(k)} $=$ $e_{k}^{n+1}$, for $(k = 1,$ $\ldots,$ $N+1)$, and also $\sigma$ $=$ $\sigma_{e}$, and $\zeta$ $=$ $0$. Then, as in the continuity equation, \begin{flushleft} \tt em1(it,jr): ddfdlrm1(k) \hfill \rm (FE48)\\ \tt e00(it,jr): ddfdlr00(k) $-$ ddfdlrm1(k+1) \hfill \rm (FE49)\\ \tt ep1(it,jr): ddfdlrp1(k) $-$ ddfdlr00(k+1) \hfill \rm (FE50)\\ \tt ep2(it,jr): \hspace{20mm} $-$ ddfdlrp1(k+1) \hfill \rm (FE51)\\ \vspace*{2mm} \tt em1(it,jd): ddfdlqm1(k) \hfill \rm (FE52)\\ \tt e00(it,jd): ddfdlq00(k) $-$ ddfdlqm1(k+1) \hfill \rm (FE53)\\ \tt ep1(it,jd): \hspace{20mm} $-$ ddfdlq00(k+1) \hfill \rm (FE54)\\ \vspace*{2mm} \tt em1(it,jd): ddfdltm1(k) \hfill \rm (FE55)\\ \tt e00(it,jd): ddfdlt00(k) $-$ ddfdltm1(k+1) \hfill \rm (FE56)\\ \tt ep1(it,jd): \hspace{20mm} $-$ ddfdlt00(k+1) \hfill \rm (FE57)\\ \vspace*{2mm} \rm Here we have defined\\ \vspace*{2mm} \tt ddfdltm1(k)$\equiv \partial Q_{k}^{n+\theta}/\partial ln T_{k-1}^{n+1}=\,${\tt ddfdlqm1(k)}$(\partial ln e/\partial ln T)_{k-1}^{n+1}$ \hfill \rm (FE58)\\ \vspace*{2mm} \tt ddfdlt00(k)$\equiv \partial Q_{k}^{n+\theta}/\partial ln T_{k}^{n+1}=\,${\tt ddfdlq00(k)}$(\partial ln e/\partial ln T)_{k}^{n+1}$ \hfill \rm (FE59)\\ \end{flushleft} \begin{center} \vspace*{2mm} \it(7) Viscous Heating \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.7.}{\sl ~Viscous Heating}} \end{center} \noindent The quantities needed to calculate the viscous energy dissipation rate {\tt qe(k)} $=$ $(\epsilon_{Q})_{k}$ and its derivatives are generated in subroutine {\tt viscous}. It is a cell-centered quantity needed only within the computational domain. Thus at $(k = 1,$ $\ldots,$ $N+1)$ we need the radius $r$, velocity $u$, and some auxiliary vectors defined below, and we apply the algorithm only at $(k = 2,$ $\ldots,$ $N-1).$ \begin{flushleft} \rm Take $f1$ to be a discrete representation of $\frac{du}{dr} - \frac{\mu}{2}<\frac{u}{r}>$. Then define $$f1\hspace{5mm}(r_{0},r_{+},u_{0},u_{+})=\frac{u_{+}-u_{0}}{r_{+}-r_{0}} -\frac{\mu}{4}(\frac{u_{+}}{r_{+}} + \frac{u_{0}}{r_{0}}) \hspace{38mm} \rm(FE60)$$ $$f1u0(r_{0},r_{+},u_{0},u_{+})\equiv \frac{\partial f_{1}}{\partial u_{0}}=-\frac{1}{r_{+}-r_{0}} -\frac{\mu}{4}\frac{1}{r_{0}} \hspace{38mm} \rm(FE61)$$ $$f1up(r_{0},r_{+},u_{0},u_{+})\equiv \frac{\partial f_{1}}{\partial u_{+}}=\hspace{3mm}\frac{1}{r_{+}-r_{0}} -\frac{\mu}{4}\frac{1}{r_{+}} \hspace{35mm} \rm(FE62)$$ $$f1r0(r_{0},r_{+},u_{0},u_{+})\equiv\frac{\partial f_{1}}{\partial r_{0}}=\hspace{3mm}\frac{(u_{+}-u_{0})}{(r_{+}-r_{0})^{2}} +\frac{\mu}{4}\frac{u_{0}}{r_{0}^{2}} \hspace{32mm} \rm(FE63)$$ $$f1rp(r_{0},r_{+},u_{0},u_{+})\equiv\frac{\partial f_{1}}{\partial r_{+}}=-\frac{(u_{+}-u_{0})}{(r_{+}-r_{0})^{2}} +\frac{\mu}{4}\frac{u_{+}}{r_{+}^{2}} \hspace{30mm} \rm(FE64)$$ \vspace*{2mm} \rm Then $${\tt dudr(k)}\equiv f1(r_{k}^{n+\theta}, r_{k+1}^{n+\theta}, u_{k}^{n+\theta}, u_{k+1}^{n+\theta}) \hspace{52mm} \rm(FE65)$$ $${\tt dudlr00(k)}\equiv \frac{\partial f_{1}}{\partial ln r_{0}}= \theta r_{k}^{n+1} f1r0(r_{k}^{n+\theta}, r_{k+1}^{n+\theta}, u_{k}^{n+\theta}, u_{k+1}^{n+\theta}) \hspace{17mm} \rm(FE66)$$ $${\tt dudlrp1(k)}\equiv \frac{\partial f_{1}}{\partial ln r_{+}}= \theta r_{k+1}^{n+1} f1rp(r_{k}^{n+\theta}, r_{k+1}^{n+\theta}, u_{k}^{n+\theta}, u_{k+1}^{n+\theta}) \hspace{17mm} \rm(FE67)$$ $${\tt dudlu00(k)}\equiv \frac{\partial f_{1}}{\partial ln u_{0}}= \theta\,{\tt unom} (k\hspace{4mm}) f1u0(r_{k}^{n+\theta}, r_{k+1}^{n+\theta}, u_{k}^{n+\theta}, u_{k+1}^{n+\theta}) \hspace{7mm} \rm(FE68)$$ $${\tt dudlup1(k)}\equiv \frac{\partial f_{1}}{\partial ln u_{+}}= \theta\,{\tt unom} (k+1) f1up(r_{k}^{n+\theta}, r_{k+1}^{n+\theta}, u_{k}^{n+\theta}, u_{k+1}^{n+\theta}) \hspace{5mm} \rm(FE69)$$ \vspace*{3mm} \rm The dissipation length is \vspace*{2mm} \tt ql(k) $\equiv \, \ell_{0}+\frac{1}{2}(r_{k}^{n+\theta}+r_{k+1}^{n+\theta}) \, \ell_{1}$ \hfill \rm(FE70)\\ \vspace*{2mm} \tt dqldr00(k) $\equiv (\partial ql / \partial ln r_{k}^{n+1})= \frac{1}{2}\theta r_{k}^{n+1}\, l_{1}$ \hfill \rm(FE71)\\ \vspace*{2mm} \tt dqldrp1(k) $\equiv (\partial ql / \partial ln r_{k+1}^{n+1})= \frac{1}{2}\theta r_{k+1}^{n+1}\, l_{1}$ \hfill \rm(FE72)\\ \vspace*{3mm} \rm The velocity divergence is \vspace*{2mm} \tt div(k) $\equiv$ [rmu(k+1)$u_{k+1}^{n+\theta}-$rmu(k)$u_{k}^{n+\theta}$] / dvol(k) \hfill \rm (FE73)\\ \vspace*{2mm} \tt ddivdr00(k) $\equiv \partial$div(k)/$\partial r_{k}^{n+1}=$\\ \end{flushleft} {\flushleft\hfill $[\mu\,$\tt rmum1(k\hspace{4mm})$u_{k}^{n+\theta}-$rmu(k\hspace{4mm})div(k)$]/$dvol(k) \rm (FE74)}\\ \vspace*{2mm} {\flushleft \tt ddivdrp1(k) $\equiv \partial$div(k)/$\partial r_{k+1}^{n+1}=$} {\flushleft\hfill $-[\mu\,$\tt rmum1(k+1)$u_{k+1}^{n+\theta}-$rmu(k+1)div(k)$]/$dvol(k) \rm (FE75)}\\ \vspace*{2mm} {\flushleft \tt ddivdu00(k)$\equiv \partial{\tt div(k)}/\partial u_{k}^{n+1}=-$rmu(k\hspace{4mm})/dvol(k) \hfill \rm (FE76)}\\ \vspace*{2mm} {\flushleft \tt ddivdup1(k)$\equiv \partial{\tt div(k)}/\partial u_{k+1}^{n+1}=$\hspace{4mm}rmu(k+1)/dvol(k) \hfill \rm (FE77)}\\ \vspace*{3mm} \noindent\rm Define {\flushleft {\tt qv(k)}$\equiv$ min[{\tt div(k)}, 0] \hfill \rm (FE78)} \vspace*{2mm} \noindent\rm Then {\flushleft \tt dqvdlr00(k) $=$ cvmgm[$\theta r_{k}^{n+1}$\tt ddivdr00(k), 0, \tt div(k)] \hfill \rm(FE79)} \vspace*{2mm} {\flushleft \tt dqvdlrp1(k) $=$ cvmgm[$\theta r_{k+1}^{n+1}$\tt ddivdrp1(k), 0, \tt div(k)] \hfill \rm(FE80)} \vspace*{2mm} {\flushleft \tt dqvdlu00(k) $=$ cvmgm[$\theta\,unom$(k\hspace{4mm})ddivdu00(k), 0, \tt div(k)] \hfill \rm(FE81)} \vspace*{2mm} {\flushleft \tt dqvdlup1(k) $=$ cvmgm[$\theta\,unom$(k+1)ddivdru1(k), 0, \tt div(k)] \hfill \rm(FE82)}\\ \vspace*{2mm} \noindent\rm The coefficient of viscosity is {\flushleft \tt qm(k) $\equiv (\mu_{Q})^{n+\theta}_{k} = C_{1}$ql(k)$(a_{s})^{n+\theta}_{k} - C_{2}$[ql(k)]$^{2}$qv(k) \hfill \rm (FE83)} \vspace*{2mm} {\flushleft \tt dqmdlr00(k) $\equiv \partial(\mu_{Q})^{n+\theta}_{k} / \partial ln r^{n+1}_{k} =$}\\ {\flushleft\hfill \tt dqldr00(k)$\{C_{1}a_{s,k}^{n+\theta}-C_{2}$[2ql(k)qv(k)+ql(k)$^{2}$dqvdlr00(k)]\} \rm(FE84)}\\ \vspace*{2mm} {\flushleft \tt dqmdlrp1(k) $\equiv \partial(\mu_{Q})^{n+\theta}_{k} / \partial ln r^{n+1}_{k+1} =$}\\ {\flushleft\hfill \tt dqldrp1(k)$\{C_{1}a_{s,k}^{n+\theta}-C_{2}$[2ql(k)qv(k)+ql(k)$^{2}$dqvdlrp1(k)]\} \rm(FE85)}\\ \vspace*{2mm} {\flushleft \tt dqmdld00(k)$\equiv \partial(\mu_{Q})^{n+\theta}_{k}/\partial ln \rho^{n+1}_{k} =$}\\ {\flushleft\hfill $\frac{1}{2}\theta C_{1}${\tt ql(k)}$a_{s,k}^{n+\theta}\left[(p_{k}^{n+1}/p_{k}^{n+\theta})\left(\frac{\partial ln p}{\partial ln T}\right)_{k}^{n+1}-(\rho_{k}^{n+1}/\rho^{n+\theta}_{k}) \right]$\hspace{2mm}\rm(FE86)}\\ \vspace*{2mm} {\flushleft \tt dqmdlt00(k)$\equiv \partial(\mu_{Q})^{n+\theta}_{k}/\partial ln T^{n+1}_{k} =$}\\ {\flushleft\hfill $\frac{1}{2}\theta C_{1}${\tt ql(k)}$a_{s,k}^{n+\theta}(p_{k}^{n+1}/p_{k}^{n+\theta})\left(\frac{\partial ln p}{\partial ln T}\right)_{k}^{n+1}$\hspace{2mm}\rm(FE87)}\\ \vspace*{2mm} {\flushleft \tt dqmdlu00(k)$\equiv \partial(\mu_{Q})^{n+\theta}_{k} / \partial ln u^{n+1}_{k}=-C_{2}$\tt ql(k)$^{2}$\tt dqvdlu00(k) \hfill \rm(FE88)}\\ \vspace*{2mm} {\flushleft \tt dqmdlup1(k)$\equiv \partial(\mu_{Q})^{n+\theta}_{k} / \partial ln u^{n+1}_{k+1}=-C_{2}$\tt ql(k)$^{2}$\tt dqvdlup1(k) \hfill \rm(FE89)}\\ \vspace*{2mm} \noindent{The rate of viscous energy dissipation is (cf. FE2 and GM48)} {\flushleft \tt qe(k)\,=\,-$\frac{4}{3}\rho_{k}^{n+\theta}$qm(k)[dudr(k)]$^{2}$dvol(k)$\,\equiv\,$\tt qf(k)dudr(k)dvol(k)\hfill\rm(FE90) }\\ \vspace*{2mm} \noindent\rm Then {\flushleft \tt e00(it,jr):dqfdlr00(k)dudr(k)dvol(k) + qf(k)durlu00(k)dvol(k)}\\ {\flushleft\hfill \tt $-\theta\,$qf(k)dudr(k)rmu(k\hspace{4mm})$r_{k}^{n+1}$ \rm(FE91)}\\ \vspace*{2mm} {\flushleft \tt ep1(it,jr):dqfdlrp1(k)dudr(k)dvol(k) + qf(k)durlup1(k)dvol(k)}\\ {\flushleft\hfill \tt $-\theta\,$qf(k)dudr(k)rmu(k+1)$r_{k+1}^{n+1}$ \rm(FE92)}\\ \vspace*{2mm} {\flushleft \tt e00(it,ju):} {\flushleft\hfill \tt dqfdlu00(k)dudr(k)dvol(k) + qf(k)durlu00(k)dvol(k) \rm(FE93)}\\ \vspace*{2mm} {\flushleft \tt ep1(it,ju):} {\flushleft\hfill \tt dqfdlup1(k)dudr(k)dvol(k) + qf(k)durlup1(k)dvol(k) \rm(FE94)}\\ \vspace*{2mm} {\flushleft \tt e00(it,jt):dqfdlt00(k)dudr(k)dvol(k) \hfill \rm(FE95)}\\ \vspace*{2mm} {\flushleft \tt e00(it,jd):dqfdld00(k)dudr(k)dvol(k) \hfill \rm(FE96)}\\ \newpage \begin{center} \it(8) Right Hand Side \addcontentsline{toc}{subsubsection}{\protect\numberline{VI.C.8.}{\sl ~Right Hand Side}} \end{center} \vspace*{2mm} {\flushleft $-$\ \tt rhs(it)$=$} \vspace*{2mm} {\flushleft \hspace{3mm}$\left[(\rho e + E)_{k}^{n+1}{\tt dvoln(k)} - (\rho e+E)_{k}^{n}{\tt dvolo(k)}\right]/ dt \hfill $}\\ \vspace*{2mm} {\flushleft $-$\ \tt dmdt(k$+$1)$(\overline{e+\frac{E}{\rho}})_{k+1}\ +$ dmdt(k)$(\overline{e+\frac{E}{\rho}})_{k}$ }\\ \vspace*{2mm} {\flushleft $+\ ${\tt rmu(k$+$1)}$F^{n+\theta}_{k+1}\,-\,{\tt rmu(k)}F^{n+\theta}_{k}$ }\\ \vspace*{2mm} {\flushleft $+\ (p + fE)^{n+\theta}_{k}[$\tt rmu(k$+$1)$u_{k+1}^{n+\theta}\,-\,$rmu(k)$u_{k}^{n+\theta}] $}\\ \vspace*{2mm} {\flushleft $+\ \frac{\mu}{4}(1-3f_{k}^{n+\theta})E^{n+\theta}_{k}\left[ (u^{n+\theta}_{k+1} / r^{n+\theta}_{k+1}) + (u^{n+\theta}_{k} / r^{n+\theta}_{k}) \right]$\tt dvol(k) }\\ \vspace*{2mm} {\flushleft $+$\ \tt df(k)$\,-\,$df(k+1)$\,+\,$qe(k) \hfill \rm (FE97) }\\ %\end{document} .