%! %%BoundingBox: (atend) %%Pages: (atend) %%DocumentFonts: (atend) %%EndComments % % FrameMaker PostScript Prolog 3.0, for use with FrameMaker 3.0 % Copyright (c) 1986,87,89,90,91 by Frame Technology Corporation. % All rights reserved. % % Known Problems: % Due to bugs in Transcript, the 'PS-Adobe-' is omitted from line 1 /FMversion (3.0) def % Set up Color vs. Black-and-White /FMPrintInColor systemdict /colorimage known systemdict /currentcolortransfer known or def % Uncomment this line to force b&w on color printer % /FMPrintInColor false def /FrameDict 195 dict def systemdict /errordict known not {/errordict 10 dict def errordict /rangecheck {stop} put} if % The readline in 23.0 doesn't recognize cr's as nl's on AppleTalk FrameDict /tmprangecheck errordict /rangecheck get put errordict /rangecheck {FrameDict /bug true put} put FrameDict /bug false put mark % Some PS machines read past the CR, so keep the following 3 lines together! currentfile 5 string readline 00 0000000000 cleartomark errordict /rangecheck FrameDict /tmprangecheck get put FrameDict /bug get { /readline { /gstring exch def /gfile exch def /gindex 0 def { gfile read pop dup 10 eq {exit} if dup 13 eq {exit} if gstring exch gindex exch put /gindex gindex 1 add def } loop pop gstring 0 gindex getinterval true } def } if /FMVERSION { FMversion ne { /Times-Roman findfont 18 scalefont setfont 100 100 moveto (FrameMaker version does not match postscript_prolog!) dup = show showpage } if } def /FMLOCAL { FrameDict begin 0 def end } def /gstring FMLOCAL /gfile FMLOCAL /gindex FMLOCAL /orgxfer FMLOCAL /orgproc FMLOCAL /organgle FMLOCAL /orgfreq FMLOCAL /yscale FMLOCAL /xscale FMLOCAL /manualfeed FMLOCAL /paperheight FMLOCAL /paperwidth FMLOCAL /FMDOCUMENT { array /FMfonts exch def /#copies exch def FrameDict begin 0 ne dup {setmanualfeed} if /manualfeed exch def /paperheight exch def /paperwidth exch def /yscale exch def /xscale exch def currenttransfer cvlit /orgxfer exch def currentscreen cvlit /orgproc exch def /organgle exch def /orgfreq exch def setpapername manualfeed {true} {papersize} ifelse {manualpapersize} {false} ifelse {desperatepapersize} if end } def /pagesave FMLOCAL /orgmatrix FMLOCAL /landscape FMLOCAL /FMBEGINPAGE { FrameDict begin /pagesave save def 3.86 setmiterlimit /landscape exch 0 ne def landscape { 90 rotate 0 exch neg translate pop } {pop pop} ifelse xscale yscale scale /orgmatrix matrix def gsave } def /FMENDPAGE { grestore pagesave restore end showpage } def /FMFONTDEFINE { FrameDict begin findfont ReEncode 1 index exch definefont FMfonts 3 1 roll put end } def /FMFILLS { FrameDict begin array /fillvals exch def end } def /FMFILL { FrameDict begin fillvals 3 1 roll put end } def /FMNORMALIZEGRAPHICS { newpath 0.0 0.0 moveto 1 setlinewidth 0 setlinecap 0 0 0 sethsbcolor 0 setgray } bind def /fx FMLOCAL /fy FMLOCAL /fh FMLOCAL /fw FMLOCAL /llx FMLOCAL /lly FMLOCAL /urx FMLOCAL /ury FMLOCAL /FMBEGINEPSF { end /FMEPSF save def /showpage {} def FMNORMALIZEGRAPHICS [/fy /fx /fh /fw /ury /urx /lly /llx] {exch def} forall fx fy translate rotate fw urx llx sub div fh ury lly sub div scale llx neg lly neg translate } bind def /FMENDEPSF { FMEPSF restore FrameDict begin } bind def FrameDict begin /setmanualfeed { %%BeginFeature *ManualFeed True statusdict /manualfeed true put %%EndFeature } def /max {2 copy lt {exch} if pop} bind def /min {2 copy gt {exch} if pop} bind def /inch {72 mul} def /pagedimen { paperheight sub abs 16 lt exch paperwidth sub abs 16 lt and {/papername exch def} {pop} ifelse } def /papersizedict FMLOCAL /setpapername { /papersizedict 14 dict def papersizedict begin /papername /unknown def /Letter 8.5 inch 11.0 inch pagedimen /LetterSmall 7.68 inch 10.16 inch pagedimen /Tabloid 11.0 inch 17.0 inch pagedimen /Ledger 17.0 inch 11.0 inch pagedimen /Legal 8.5 inch 14.0 inch pagedimen /Statement 5.5 inch 8.5 inch pagedimen /Executive 7.5 inch 10.0 inch pagedimen /A3 11.69 inch 16.5 inch pagedimen /A4 8.26 inch 11.69 inch pagedimen /A4Small 7.47 inch 10.85 inch pagedimen /B4 10.125 inch 14.33 inch pagedimen /B5 7.16 inch 10.125 inch pagedimen end } def /papersize { papersizedict begin /Letter {lettertray letter} def /LetterSmall {lettertray lettersmall} def /Tabloid {11x17tray 11x17} def /Ledger {ledgertray ledger} def /Legal {legaltray legal} def /Statement {statementtray statement} def /Executive {executivetray executive} def /A3 {a3tray a3} def /A4 {a4tray a4} def /A4Small {a4tray a4small} def /B4 {b4tray b4} def /B5 {b5tray b5} def /unknown {unknown} def papersizedict dup papername known {papername} {/unknown} ifelse get end /FMdicttop countdictstack 1 add def statusdict begin stopped end countdictstack -1 FMdicttop {pop end} for } def /manualpapersize { papersizedict begin /Letter {letter} def /LetterSmall {lettersmall} def /Tabloid {11x17} def /Ledger {ledger} def /Legal {legal} def /Statement {statement} def /Executive {executive} def /A3 {a3} def /A4 {a4} def /A4Small {a4small} def /B4 {b4} def /B5 {b5} def /unknown {unknown} def papersizedict dup papername known {papername} {/unknown} ifelse get end stopped } def /desperatepapersize { statusdict /setpageparams known { paperwidth paperheight 0 1 statusdict begin {setpageparams} stopped pop end } if } def /savematrix { orgmatrix currentmatrix pop } bind def /restorematrix { orgmatrix setmatrix } bind def /dmatrix matrix def /dpi 72 0 dmatrix defaultmatrix dtransform dup mul exch dup mul add sqrt def /freq dpi 18.75 div 8 div round dup 0 eq {pop 1} if 8 mul dpi exch div def /sangle 1 0 dmatrix defaultmatrix dtransform exch atan def /DiacriticEncoding [ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quotesingle /parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one /two /three /four /five /six /seven /eight /nine /colon /semicolon /less /equal /greater /question /at /A /B /C /D /E /F /G /H /I /J /K /L /M /N /O /P /Q /R /S /T /U /V /W /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore /grave /a /b /c /d /e /f /g /h /i /j /k /l /m /n /o /p /q /r /s /t /u /v /w /x /y /z /braceleft /bar /braceright /asciitilde /.notdef /Adieresis /Aring /Ccedilla /Eacute /Ntilde /Odieresis /Udieresis /aacute /agrave /acircumflex /adieresis /atilde /aring /ccedilla /eacute /egrave /ecircumflex /edieresis /iacute /igrave /icircumflex /idieresis /ntilde /oacute /ograve /ocircumflex /odieresis /otilde /uacute /ugrave /ucircumflex /udieresis /dagger /.notdef /cent /sterling /section /bullet /paragraph /germandbls /registered /copyright /trademark /acute /dieresis /.notdef /AE /Oslash /.notdef /.notdef /.notdef /.notdef /yen /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /ordfeminine /ordmasculine /.notdef /ae /oslash /questiondown /exclamdown /logicalnot /.notdef /florin /.notdef /.notdef /guillemotleft /guillemotright /ellipsis /.notdef /Agrave /Atilde /Otilde /OE /oe /endash /emdash /quotedblleft /quotedblright /quoteleft /quoteright /.notdef /.notdef /ydieresis /Ydieresis /fraction /currency /guilsinglleft /guilsinglright /fi /fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase /perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave /Iacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex /.notdef /Ograve /Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde /macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek /caron ] def /ReEncode { dup length dict begin { 1 index /FID ne {def} {pop pop} ifelse } forall 0 eq {/Encoding DiacriticEncoding def} if currentdict end } bind def /graymode true def /bwidth FMLOCAL /bpside FMLOCAL /bstring FMLOCAL /onbits FMLOCAL /offbits FMLOCAL /xindex FMLOCAL /yindex FMLOCAL /x FMLOCAL /y FMLOCAL /setpattern { /bwidth exch def /bpside exch def /bstring exch def /onbits 0 def /offbits 0 def freq sangle landscape {90 add} if {/y exch def /x exch def /xindex x 1 add 2 div bpside mul cvi def /yindex y 1 add 2 div bpside mul cvi def bstring yindex bwidth mul xindex 8 idiv add get 1 7 xindex 8 mod sub bitshift and 0 ne {/onbits onbits 1 add def 1} {/offbits offbits 1 add def 0} ifelse } setscreen {} settransfer offbits offbits onbits add div FMsetgray /graymode false def } bind def /grayness { FMsetgray graymode not { /graymode true def orgxfer cvx settransfer orgfreq organgle orgproc cvx setscreen } if } bind def /HUE FMLOCAL /SAT FMLOCAL /BRIGHT FMLOCAL /Colors FMLOCAL FMPrintInColor { /HUE 0 def /SAT 0 def /BRIGHT 0 def % array of arrays Hue and Sat values for the separations [HUE BRIGHT] /Colors [[0 0 ] % black [0 0 ] % white [0.00 1.0] % red [0.37 1.0] % green [0.60 1.0] % blue [0.50 1.0] % cyan [0.83 1.0] % magenta [0.16 1.0] % comment / yellow ] def /BEGINBITMAPCOLOR { BITMAPCOLOR} def /BEGINBITMAPCOLORc { BITMAPCOLORc} def /BEGINBITMAPTRUECOLOR { BITMAPTRUECOLOR } def /BEGINBITMAPCOLORc { BITMAPTRUECOLORc } def /K { Colors exch get dup 0 get /HUE exch store 1 get /BRIGHT exch store HUE 0 eq BRIGHT 0 eq and {1.0 SAT sub setgray} {HUE SAT BRIGHT sethsbcolor} ifelse } def /FMsetgray { /SAT exch 1.0 exch sub store HUE 0 eq BRIGHT 0 eq and {1.0 SAT sub setgray} {HUE SAT BRIGHT sethsbcolor} ifelse } bind def } { /BEGINBITMAPCOLOR { BITMAPGRAY} def /BEGINBITMAPCOLORc { BITMAPGRAYc} def /BEGINBITMAPTRUECOLOR { BITMAPTRUEGRAY } def /BEGINBITMAPTRUECOLORc { BITMAPTRUEGRAYc } def /FMsetgray {setgray} bind def /K { pop } def } ifelse /normalize { transform round exch round exch itransform } bind def /dnormalize { dtransform round exch round exch idtransform } bind def /lnormalize { 0 dtransform exch cvi 2 idiv 2 mul 1 add exch idtransform pop } bind def /H { lnormalize setlinewidth } bind def /Z { setlinecap } bind def /fillvals FMLOCAL /X { fillvals exch get dup type /stringtype eq {8 1 setpattern} {grayness} ifelse } bind def /V { gsave eofill grestore } bind def /N { stroke } bind def /M {newpath moveto} bind def /E {lineto} bind def /D {curveto} bind def /O {closepath} bind def /n FMLOCAL /L { /n exch def newpath normalize moveto 2 1 n {pop normalize lineto} for } bind def /Y { L closepath } bind def /x1 FMLOCAL /x2 FMLOCAL /y1 FMLOCAL /y2 FMLOCAL /rad FMLOCAL /R { /y2 exch def /x2 exch def /y1 exch def /x1 exch def x1 y1 x2 y1 x2 y2 x1 y2 4 Y } bind def /RR { /rad exch def normalize /y2 exch def /x2 exch def normalize /y1 exch def /x1 exch def newpath x1 y1 rad add moveto x1 y2 x2 y2 rad arcto x2 y2 x2 y1 rad arcto x2 y1 x1 y1 rad arcto x1 y1 x1 y2 rad arcto closepath 16 {pop} repeat } bind def /C { grestore gsave R clip } bind def /FMpointsize FMLOCAL /F { FMfonts exch get FMpointsize scalefont setfont } bind def /Q { /FMpointsize exch def F } bind def /T { moveto show } bind def /RF { rotate 0 ne {-1 1 scale} if } bind def /TF { gsave moveto RF show grestore } bind def /P { moveto 0 32 3 2 roll widthshow } bind def /PF { gsave moveto RF 0 32 3 2 roll widthshow grestore } bind def /S { moveto 0 exch ashow } bind def /SF { gsave moveto RF 0 exch ashow grestore } bind def /B { moveto 0 32 4 2 roll 0 exch awidthshow } bind def /BF { gsave moveto RF 0 32 4 2 roll 0 exch awidthshow grestore } bind def /G { gsave newpath normalize translate 0.0 0.0 moveto dnormalize scale 0.0 0.0 1.0 5 3 roll arc closepath fill grestore } bind def /A { gsave savematrix newpath 2 index 2 div add exch 3 index 2 div sub exch normalize 2 index 2 div sub exch 3 index 2 div add exch translate scale 0.0 0.0 1.0 5 3 roll arc restorematrix stroke grestore } bind def /x FMLOCAL /y FMLOCAL /w FMLOCAL /h FMLOCAL /xx FMLOCAL /yy FMLOCAL /ww FMLOCAL /hh FMLOCAL /FMsaveobject FMLOCAL /FMoptop FMLOCAL /FMdicttop FMLOCAL /BEGINPRINTCODE { /FMdicttop countdictstack 1 add def /FMoptop count 4 sub def /FMsaveobject save def userdict begin /showpage {} def FMNORMALIZEGRAPHICS 3 index neg 3 index neg translate } bind def /ENDPRINTCODE { count -1 FMoptop {pop pop} for countdictstack -1 FMdicttop {pop end} for FMsaveobject restore } bind def /gn { 0 { 46 mul cf read pop 32 sub dup 46 lt {exit} if 46 sub add } loop add } bind def /str FMLOCAL /cfs { /str sl string def 0 1 sl 1 sub {str exch val put} for str def } bind def /ic [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0223 0 {0 hx} {1 hx} {2 hx} {3 hx} {4 hx} {5 hx} {6 hx} {7 hx} {8 hx} {9 hx} {10 hx} {11 hx} {12 hx} {13 hx} {14 hx} {15 hx} {16 hx} {17 hx} {18 hx} {19 hx} {gn hx} {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15} {16} {17} {18} {19} {gn} {0 wh} {1 wh} {2 wh} {3 wh} {4 wh} {5 wh} {6 wh} {7 wh} {8 wh} {9 wh} {10 wh} {11 wh} {12 wh} {13 wh} {14 wh} {gn wh} {0 bl} {1 bl} {2 bl} {3 bl} {4 bl} {5 bl} {6 bl} {7 bl} {8 bl} {9 bl} {10 bl} {11 bl} {12 bl} {13 bl} {14 bl} {gn bl} {0 fl} {1 fl} {2 fl} {3 fl} {4 fl} {5 fl} {6 fl} {7 fl} {8 fl} {9 fl} {10 fl} {11 fl} {12 fl} {13 fl} {14 fl} {gn fl} ] def /sl FMLOCAL /val FMLOCAL /ws FMLOCAL /im FMLOCAL /bs FMLOCAL /cs FMLOCAL /len FMLOCAL /pos FMLOCAL /ms { /sl exch def /val 255 def /ws cfs /im cfs /val 0 def /bs cfs /cs cfs } bind def 400 ms /ip { is 0 cf cs readline pop { ic exch get exec add } forall pop } bind def /wh { /len exch def /pos exch def ws 0 len getinterval im pos len getinterval copy pop pos len } bind def /bl { /len exch def /pos exch def bs 0 len getinterval im pos len getinterval copy pop pos len } bind def /s1 1 string def /fl { /len exch def /pos exch def /val cf s1 readhexstring pop 0 get def pos 1 pos len add 1 sub {im exch val put} for pos len } bind def /hx { 3 copy getinterval cf exch readhexstring pop pop } bind def /h FMLOCAL /w FMLOCAL /d FMLOCAL /lb FMLOCAL /bitmapsave FMLOCAL /is FMLOCAL /cf FMLOCAL /wbytes { dup 8 eq {pop} {1 eq {7 add 8 idiv} {3 add 4 idiv} ifelse} ifelse } bind def /BEGINBITMAPBWc { 1 {} COMMONBITMAPc } bind def /BEGINBITMAPGRAYc { 8 {} COMMONBITMAPc } bind def /BEGINBITMAP2BITc { 2 {} COMMONBITMAPc } bind def /COMMONBITMAPc { /r exch def /d exch def gsave translate rotate scale /h exch def /w exch def /lb w d wbytes def sl lb lt {lb ms} if /bitmapsave save def r /is im 0 lb getinterval def ws 0 lb getinterval is copy pop /cf currentfile def w h d [w 0 0 h neg 0 h] {ip} image bitmapsave restore grestore } bind def /BEGINBITMAPBW { 1 {} COMMONBITMAP } bind def /BEGINBITMAPGRAY { 8 {} COMMONBITMAP } bind def /BEGINBITMAP2BIT { 2 {} COMMONBITMAP } bind def /COMMONBITMAP { /r exch def /d exch def gsave translate rotate scale /h exch def /w exch def /bitmapsave save def r /is w d wbytes string def /cf currentfile def w h d [w 0 0 h neg 0 h] {cf is readhexstring pop} image bitmapsave restore grestore } bind def /proc1 FMLOCAL /proc2 FMLOCAL /newproc FMLOCAL /Fmcc { /proc2 exch cvlit def /proc1 exch cvlit def /newproc proc1 length proc2 length add array def newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval newproc cvx } bind def /ngrayt 256 array def /nredt 256 array def /nbluet 256 array def /ngreent 256 array def /gryt FMLOCAL /blut FMLOCAL /grnt FMLOCAL /redt FMLOCAL /indx FMLOCAL /cynu FMLOCAL /magu FMLOCAL /yelu FMLOCAL /k FMLOCAL /u FMLOCAL /colorsetup { currentcolortransfer /gryt exch def /blut exch def /grnt exch def /redt exch def 0 1 255 { /indx exch def /cynu 1 red indx get 255 div sub def /magu 1 green indx get 255 div sub def /yelu 1 blue indx get 255 div sub def /k cynu magu min yelu min def /u k currentundercolorremoval exec def nredt indx 1 0 cynu u sub max sub redt exec put ngreent indx 1 0 magu u sub max sub grnt exec put nbluet indx 1 0 yelu u sub max sub blut exec put ngrayt indx 1 k currentblackgeneration exec sub gryt exec put } for {255 mul cvi nredt exch get} {255 mul cvi ngreent exch get} {255 mul cvi nbluet exch get} {255 mul cvi ngrayt exch get} setcolortransfer {pop 0} setundercolorremoval {} setblackgeneration } bind def /tran FMLOCAL /fakecolorsetup { /tran 256 string def 0 1 255 {/indx exch def tran indx red indx get 77 mul green indx get 151 mul blue indx get 28 mul add add 256 idiv put} for currenttransfer {255 mul cvi tran exch get 255.0 div} exch Fmcc settransfer } bind def /BITMAPCOLOR { /d 8 def gsave translate rotate scale /h exch def /w exch def /bitmapsave save def colorsetup /is w d wbytes string def /cf currentfile def w h d [w 0 0 h neg 0 h] {cf is readhexstring pop} {is} {is} true 3 colorimage bitmapsave restore grestore } bind def /BITMAPCOLORc { /d 8 def gsave translate rotate scale /h exch def /w exch def /lb w d wbytes def sl lb lt {lb ms} if /bitmapsave save def colorsetup /is im 0 lb getinterval def ws 0 lb getinterval is copy pop /cf currentfile def w h d [w 0 0 h neg 0 h] {ip} {is} {is} true 3 colorimage bitmapsave restore grestore } bind def /BITMAPTRUECOLORc { gsave translate rotate scale /h exch def /w exch def /bitmapsave save def /is w string def ws 0 w getinterval is copy pop /cf currentfile def w h 8 [w 0 0 h neg 0 h] {ip} {gip} {bip} true 3 colorimage bitmapsave restore grestore } bind def /BITMAPTRUECOLOR { gsave translate rotate scale /h exch def /w exch def /bitmapsave save def /is w string def /gis w string def /bis w string def /cf currentfile def w h 8 [w 0 0 h neg 0 h] { cf is readhexstring pop } { cf gis readhexstring pop } { cf bis readhexstring pop } true 3 colorimage bitmapsave restore grestore } bind def /BITMAPTRUEGRAYc { gsave translate rotate scale /h exch def /w exch def /bitmapsave save def /is w string def ws 0 w getinterval is copy pop /cf currentfile def w h 8 [w 0 0 h neg 0 h] {ip gip bip w gray} image bitmapsave restore grestore } bind def /ww FMLOCAL /r FMLOCAL /g FMLOCAL /b FMLOCAL /i FMLOCAL /gray { /ww exch def /b exch def /g exch def /r exch def 0 1 ww 1 sub { /i exch def r i get .299 mul g i get .587 mul b i get .114 mul add add r i 3 -1 roll floor cvi put } for r } bind def /BITMAPTRUEGRAY { gsave translate rotate scale /h exch def /w exch def /bitmapsave save def /is w string def /gis w string def /bis w string def /cf currentfile def w h 8 [w 0 0 h neg 0 h] { cf is readhexstring pop cf gis readhexstring pop cf bis readhexstring pop w gray} image bitmapsave restore grestore } bind def /BITMAPGRAY { 8 {fakecolorsetup} COMMONBITMAP } bind def /BITMAPGRAYc { 8 {fakecolorsetup} COMMONBITMAPc } bind def /ENDBITMAP { } bind def end /ALDsave FMLOCAL /ALDmatrix matrix def ALDmatrix currentmatrix pop /StartALD { /ALDsave save def savematrix ALDmatrix setmatrix } bind def /InALD { restorematrix } bind def /DoneALD { ALDsave restore } bind def %%EndProlog %%BeginSetup (3.0) FMVERSION 1 1 612 792 0 1 13 FMDOCUMENT 0 0 /Helvetica-Bold FMFONTDEFINE 1 0 /Times-Roman FMFONTDEFINE 2 0 /Times-Bold FMFONTDEFINE 3 0 /Times-Italic FMFONTDEFINE 4 0 /Helvetica FMFONTDEFINE 32 FMFILLS 0 0 FMFILL 1 .1 FMFILL 2 .3 FMFILL 3 .5 FMFILL 4 .7 FMFILL 5 .9 FMFILL 6 .97 FMFILL 7 1 FMFILL 8 <0f1e3c78f0e1c387> FMFILL 9 <0f87c3e1f0783c1e> FMFILL 10 FMFILL 11 FMFILL 12 <8142241818244281> FMFILL 13 <03060c183060c081> FMFILL 14 <8040201008040201> FMFILL 16 1 FMFILL 17 .9 FMFILL 18 .7 FMFILL 19 .5 FMFILL 20 .3 FMFILL 21 .1 FMFILL 22 0.03 FMFILL 23 0 FMFILL 24 FMFILL 25 FMFILL 26 <3333333333333333> FMFILL 27 <0000ffff0000ffff> FMFILL 28 <7ebddbe7e7dbbd7e> FMFILL 29 FMFILL 30 <7fbfdfeff7fbfdfe> FMFILL %%EndSetup %%Page: "1" 1 %%BeginPaperSize: Letter %%EndPaperSize 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (February 1, 1994) 72 737.98 T 72 444.68 558 444.68 2 L 2 Z N 72 75.33 558 75.33 2 L 0.25 H N 0 10 Q (1) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T 1 24 Q -0.17 (Guide to Ethernet) 207 677 S 207 629 558 639 C 207 630 459 630 2 L 0.25 H 0 Z 0 X 0 K N 0 0 612 792 C 1 24 Q 0 X 0 K -0.17 (Con\336guration) 207 647 S 2 12 Q (Charles Spurgeon) 207 581 T 0 9 Q (Networking Services) 207 521 T (University of T) 207 509 T (exas at Austin) 268.76 509 T 1 10 Q (Document version 2.3) 207 425.33 T 3 9 Q (Copyright 1994 by Charles Spur) 207 402 T (geon \050c.spur) 324.01 402 T (geon@utexas.edu\051. This guide may be fr) 368.6 402 T (eely r) 513.58 402 T (edis-) 533.46 402 T (tributed in its entir) 207 391 T (ety pr) 274.33 391 T (ovided that this copyright notice is not r) 294.72 391 T (emoved. It may not be sold for) 438.43 391 T (pr) 207 380 T (o\336t or incorporated in commer) 214.66 380 T (cial documents without the written permission of the copyright) 325.66 380 T (holder) 207 369 T (.) 229.47 369 T 1 F (NOTICE: The examples and other information in this guide are intended solely as teaching aids) 207 346 T -0.34 (and should not be applied to any particular network without independent veri\336cation. Independent) 207 335 P -0.03 (veri\336cation is especially important in any application in which an incorrect network design could) 207 324 P (result in loss of data or time. For these reasons, while every ef) 207 313 T (fort was made to provide accurate) 429.99 313 T (information, there is no warranty expressed or implied that the examples, speci\336cations, or other) 207 302 T -0.06 (information shown here are free of error) 207 291 P -0.06 (, or that they will meet the requirements of any particular) 351.01 291 P (network application.) 207 280 T 72 237 558 240 C 207 239.16 558 239.16 2 L 0.25 H 2 Z 0 X 0 K N 72 239.16 198 239.16 2 L 0 Z N 0 0 612 792 C 0 12 Q 0 X 0 K (1.0) 181.33 244 T (Introduction) 207 244 T 1 10 Q -0.15 (This is a guide to the two con\336guration models provided in the IEEE 802.3 standard for) 207 216.33 P -0.24 (multi-segment 10 Megabit per second baseband Ethernets. The two models provide two) 207 204.33 P (dif) 207 192.33 T (ferent approaches to Ethernet con\336guration.) 217.92 192.33 T (The \336rst approach is a set of rule-based con\336guration guidelines, and the second) 207 168.33 T -0.29 (approach is a calculation method that can be applied to more complex Ethernet systems.) 207 156.33 P -0.45 (The IEEE multi-segment con\336guration guidelines cover baseband media only) 207 144.33 P -0.45 (, including) 513.65 144.33 P (10BASE5 thick Ethernet, 10BASE2 thin Ethernet, 10BASE-T twisted-pair Ethernet,) 207 132.33 T (and 10BASE-F \336ber optic media systems. The 10BROAD36 broadband system is not) 207 120.33 T (covered by the IEEE multi-segment baseband guidelines.) 207 108.33 T 201.14 274.21 561.57 357.07 R 1 H 2 Z N FMENDPAGE %%EndPage: "1" 2 %%Page: "2" 2 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (Scope of the Con\336guration Guidelines) 189 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (2) 54 60.96 T 0 9 Q ( of) 59.56 60.96 T 0 10 Q ( 12) 70.54 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 1 10 Q (This guide does not provide any descriptions of the IEEE acronyms and various media) 189 680.66 T -0.23 (types, nor does it explain how the Ethernet system works. That information is contained) 189 668.66 P (in the) 189 656.66 T 2 F (Guide to Ethernet) 213.99 656.66 T 1 F (, which you are strongly encouraged to read if you are not) 291.16 656.66 T (familiar with the IEEE terminology or the range of media types and standards.) 189 644.66 T 54 601.33 540 604.33 C 189 603.48 540 603.48 2 L 0.25 H 2 Z 0 X 0 K N 54 603.48 180 603.48 2 L 0 Z N 0 0 612 792 C 0 12 Q 0 X 0 K (2.0) 163.33 608.33 T (Scope of the Con\336guration Guidelines) 189 608.33 T 1 10 Q (Designing an Ethernet based on a single segment of a given media variety is pretty) 189 580.66 T (straightforward. T) 189 568.66 T (o stay within the speci\336cations when using thick Ethernet, for exam-) 261.02 568.66 T (ple, you must make sure that the thick Ethernet cable segment does not exceed 500) 189 556.66 T -0.11 (meters in length and does not contain more than 100 MAU connections to the cable. As) 189 544.66 P (long as the cable that you use to build the segment also meets the media speci\336cations) 189 532.66 T (and is properly installed, the system will work correctly) 189 520.66 T (.) 411.26 520.66 T (However) 189 496.66 T (, when you build a multi-segment network things get more complex. T) 225.23 496.66 T (o help) 506.86 496.66 T (you maintain compliance with the Ethernet speci\336cations when combining segments) 189 484.66 T (from a variety of Ethernet media types, the IEEE developed two models for verifying) 189 472.66 T -0.18 (the operation of a multi-segment Ethernet. T) 189 460.66 P -0.18 (ransmission System Model 1 provides a set) 365.51 460.66 P -0.05 (of standard con\336guration rules, and T) 189 448.66 P -0.05 (ransmission System Model 2 provides a set of cal-) 338.85 448.66 P (culation aids so that you can do the calculations yourself.) 189 436.66 T 0 F (2.1) 166.11 406.66 T (Collision Domain) 189 406.66 T 1 F (The scope of the multi-segment con\336guration guidelines is limited to a single Ethernet,) 189 382.66 T (or \322collision domain.\323 A collision domain is formally de\336ned as a single CSMA/CD) 189 370.66 T (network in which there will be a collision if two computers attached to the system both) 189 358.66 T (transmit at the same time. T) 189 346.66 T (o combine multiple segments into a single Ethernet system) 299.9 346.66 T -0.21 (you use repeaters, MAUs, AUI cables, and the segments themselves to create a network) 189 334.66 P (that functions as a single collision domain.) 189 322.66 T (Each computer) 189 298.66 T (, or DTE, contains an Ethernet interface that implements the medium) 248.83 298.66 T (access control \050MAC\051 rules for Ethernet. If two DTEs with their associated Ethernet) 189 286.66 T -0.19 (interfaces and MACs are attached to segments that are connected by repeaters then they) 189 274.66 P (are within the same collision domain, since repeaters are designed to propagate colli-) 189 262.66 T (sions onto all segments to which they are connected.) 189 250.66 T (If two DTEs are instead separated by a packet switch such as a bridge or router) 189 226.66 T (, then) 504.73 226.66 T (they are in separate collision domains, since packet switches do not propagate colli-) 189 214.66 T -0.22 (sions. Instead, bridges and routers contain multiple Ethernet interfaces and are designed) 189 202.66 P -0.2 (to receive a packet on one Ethernet and transmit the data onto another Ethernet in a new) 189 190.66 P (packet.) 189 178.66 T -0.39 (Instead of propagating collision signals between Ethernets, packet switches interrupt the) 189 154.66 P (collision domain and provide separation for the operation of the Ethernets they link.) 189 142.66 T (Therefore, you can use packet switches to build lar) 189 130.66 T (ger network systems by connecting) 392.27 130.66 T (individual Ethernet systems. The point is that the con\336guration guidelines apply to a) 189 118.66 T (single collision domain only) 189 106.66 T (, and have nothing to say about combining multiple Ether-) 301.91 106.66 T (nets with packet switches.) 189 94.66 T FMENDPAGE %%EndPage: "2" 3 %%Page: "3" 3 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (IEEE Guidelines for Baseband Multi-segment Networks) 207 739.85 T 72 726.98 558 726.98 2 L 0.25 H N 72 75.33 558 75.33 2 L 2 Z N (Guide to Ethernet Con\336guration) 207 60.96 T 0 10 Q (3) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T 0 12 Q (3.0) 181.33 679.33 T (IEEE Guidelines for Baseband Multi-segment) 207 679.33 T 72 658.33 558 661.33 C 207 660.48 558 660.48 2 L 0.25 H 2 Z 0 X 0 K N 72 660.48 198 660.48 2 L 0 Z N 0 0 612 792 C 0 12 Q 0 X 0 K (Networks) 207 665.33 T 0 10 Q (1) 260.98 670.13 T 1 F (The guidelines and calculations used for verifying an Ethernet con\336guration are based) 207 637.66 T (on maintaining two important features of an Ethernet system: the maximum round-trip) 207 625.66 T (signal propagation delay and the minimum inter) 207 613.66 T (-packet gap.) 398.9 613.66 T 0 F (3.1) 184.11 583.66 T (Round-T) 207 583.66 T (rip Signal Propagation Delay) 247.53 583.66 T 1 F (The limit on the maximum round-trip signal propagation delay is related to the opera-) 207 559.66 T -0.08 (tion of Ethernet, which is based on Carrier Sense Multiple Access with Collision Detec-) 207 547.66 P -0.31 (tion \050CSMA/CD\051. For the CSMA/CD system to operate properly) 207 535.66 P -0.31 (, all devices attached to) 463.49 535.66 P (an Ethernet must be able to hear each other's transmissions and to respond to collisions) 207 523.66 T (within the correct time limits.) 207 511.66 T (Each segment you use in an Ethernet provides a certain amount of signal delay) 207 487.66 T (. The) 521.4 487.66 T (important thing is that when you build a multi-segment Ethernet, the total round-trip) 207 475.66 T (signal propagation delay must not exceed the limits in the speci\336cations. By following) 207 463.66 T -0.38 (the con\336guration guidelines you can ensure that your system meets the limits set forth in) 207 451.66 P (the speci\336cations.) 207 439.66 T 0 F (3.2) 184.11 409.66 T (Inter-Packet Gap) 207 409.66 T 1 F (The standard for the inter) 207 385.66 T (-packet gap establishes a minimum spacing between packets) 308.38 385.66 T (sent over an Ethernet. Ethernet interfaces are designed so that they can receive packets) 207 373.66 T -0.1 (that are sent \322back-to-back\323 with only the minimum inter) 207 361.66 P -0.1 (-packet gap between them. As) 435.27 361.66 P (long as the inter) 207 349.66 T (-packet gap is correct, an Ethernet interface chip can keep up with the) 270.92 349.66 T (full traf) 207 337.66 T (\336c rate and not miss any packets.) 237.07 337.66 T (The signal reconstruction circuits in an Ethernet repeater) 207 313.66 T (, combined with other signal) 433.37 313.66 T -0.35 (variations that can occur in the transmission path of a packet, can result in a shrinkage in) 207 301.66 P (the inter) 207 289.66 T (-packet gap between two packets travelling across the network. Therefore, the) 239.83 289.66 T (requirement to maintain a minimum gap between packets means that the amount of) 207 277.66 T (equipment that may be in the path between any two DTEs must be limited. By follow-) 207 265.66 T -0.41 (ing the multi-segment con\336guration guidelines you can ensure that your network system) 207 253.66 P (is capable of maintaining the correct inter) 207 241.66 T (-packet gap and prevent the loss of packets.) 373.34 241.66 T 72 167.29 558 183.29 C 207 175.29 351 175.29 2 L 0.25 H 2 Z 0 X 0 K N 0 0 612 792 C 1 9 Q 0 X 0 K -0.33 (1. Portions of the information contained herein are copyrighted information of the IEEE extracted) 207 161.29 P (from IEEE Std 802.3j-1993, IEEE Standard for Local and Metropolitan Area Networks) 207 150.29 T (\320) 523.5 150.29 T ( Fiber) 527.99 150.29 T (Optic Active and Passive Star) 207 139.29 T (-Based Elements, T) 314.16 139.29 T (ype 10BASE-F) 384.17 139.29 T (, copyright) 438.62 139.29 T (\251) 479.81 139.29 T ( 1993 by the Insti-) 486.64 139.29 T (tute of Electrical and Electronics Engineers, Inc. The IEEE takes no responsibility for damages) 207 128.29 T -0.19 (resulting from the reader) 207 117.29 P -0.19 (\325) 295.85 117.29 P -0.19 (s misinterpretation of said information resulting from the placement and) 298.35 117.29 P (context in this publication. Information is reproduced with the permission of the IEEE.) 207 106.29 T FMENDPAGE %%EndPage: "3" 4 %%Page: "4" 4 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 189 739.85 T (ransmission System Model 1) 194 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (4) 54 60.96 T 0 9 Q ( of) 59.56 60.96 T 0 10 Q ( 12) 70.54 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 54 672.33 540 675.33 C 189 674.48 540 674.48 2 L 0.25 H 2 Z 0 X 0 K N 54 674.48 180 674.48 2 L 0 Z N 0 0 612 792 C 0 12 Q 0 X 0 K (4.0) 163.33 679.33 T (T) 189 679.33 T (ransmission System Model 1) 195.67 679.33 T 1 10 Q (In this model, a set of multi-segment con\336guration rules are provided based on conser-) 189 651.66 T (vative calculations for the components involved. Even though these con\336guration rules) 189 639.66 T -0.27 (are based on conservative calculations, don\325) 189 627.66 P -0.27 (t let this convince you that you can bend the) 363.97 627.66 P (rules and always get away with it. There isn't a lot of engineering mar) 189 615.66 T (gin left in maxi-) 467.64 615.66 T (mum-sized Ethernets, despite the allowances made in the standards for manufacturing) 189 603.66 T (tolerances and equipment variances.) 189 591.66 T (Therefore, even though there is some mar) 189 567.66 T (gin built into the rule-based con\336guration) 355.63 567.66 T -0.18 (guidelines, this does not mean that an Ethernet system that is outside the guidelines will) 189 555.66 P -0.04 (be sure to work. A system that violates the guidelines may work, and it may not. W) 189 543.66 P -0.04 (orse) 520.89 543.66 P (yet, it may appear to work acceptably for a while but then proceed to fail when the net-) 189 531.66 T (work grows in size or the traf) 189 519.66 T (\336c load and the population of attached stations exceeds) 306.51 519.66 T -0.37 (some level. If you want guaranteed performance and reliability) 189 507.66 P -0.37 (, then you need to stick to) 437.11 507.66 P (the published guidelines.) 189 495.66 T (The multi-segment con\336guration rules are as follows. \050Bold face type indicates text) 189 471.66 T (taken directly from the IEEE standard.\051) 189 459.66 T 0 9 Q (1.) 189 441.66 T 2 10 Q (Repeater sets ar) 202.74 441.66 T (e r) 271.39 441.66 T (equir) 282.58 441.66 T (ed for all segment inter) 305.17 441.66 T (connection.) 403.8 441.66 T 1 F ( The repeaters used) 452.39 441.66 T (must comply with all IEEE speci\336cations in section 9 of the 802.3 standard, and do) 202.74 429.66 T (signal retiming and reshaping, preamble regeneration, etc. If you do not use true) 202.74 417.66 T (IEEE 802.3 repeaters for all segment interconnections, then your Ethernet system) 202.74 405.66 T (cannot be veri\336ed using either con\336guration model.) 202.74 393.66 T 0 9 Q (2.) 189 378.66 T 2 10 Q (MAUs that ar) 202.74 378.66 T (e part of r) 261.96 378.66 T (epeater sets count toward the maximum number of) 304.8 378.66 T (MAUs on a segment.) 202.74 366.66 T 1 F ( Thick Ethernet repeaters typically use an outboard MAU to) 291.02 366.66 T (connect to the thick Ethernet coax. Thin coax and twisted-pair repeater hubs use) 202.74 354.66 T (internal MAUs located on each repeater port.) 202.74 342.66 T 0 9 Q (3.) 189 327.66 T 2 10 Q (The transmission path permitted between any two DTEs may consist of up to) 202.74 327.66 T -0.22 (\336ve segments, four r) 202.74 315.66 P -0.22 (epeater sets \050including optional AUIs\051, two MAUs, and two) 288.51 315.66 P (AUIs) 202.74 303.66 T 1 F (. The repeater sets are assumed to have their own MAUs, which are not) 224.95 303.66 T (counted in this rule.) 202.74 291.66 T 0 9 Q (4.) 189 276.66 T 2 10 Q (AUI cables for 10BASE-FP and 10BASE-FL shall not exceed 25 m.) 202.74 276.66 T (\050Since two) 490.37 276.66 T (MAUs per segment ar) 202.74 264.66 T (e r) 296.65 264.66 T (equir) 307.85 264.66 T (ed, 25 m per MAU r) 330.43 264.66 T (esults in a total AUI cable) 416.3 264.66 T (length of 50 m per segment\051.) 202.74 252.66 T 0 9 Q (5.) 189 237.66 T 2 10 Q (When a transmission path consists of four r) 202.74 237.66 T (epeaters and \336ve segments, up to) 388.3 237.66 T -0.1 (thr) 202.74 225.66 P -0.1 (ee of the segments may be mixing and the r) 215.89 225.66 P -0.1 (emainder must be link segments.) 398.34 225.66 P (When \336ve segments ar) 202.74 213.66 T (e pr) 298.89 213.66 T (esent, each \336ber optic link segment \050FOIRL,) 315.64 213.66 T -0.16 (10BASE-FB, or 10BASE-FL\051 shall not exceed 500 m, and each 10BASE-FP seg-) 202.74 201.66 P (ment shall not exceed 300 m.) 202.74 189.66 T 0 9 Q (6.) 189 174.66 T 2 10 Q -0.25 (When a transmission path consists of thr) 202.74 174.66 P -0.25 (ee r) 374.86 174.66 P -0.25 (epeater sets and four segments, the) 390.24 174.66 P (following r) 202.74 162.66 T (estrictions apply) 248.93 162.66 T 1 F (:) 319.17 162.66 T 2 F (a. The maximum allowable length of any inter) 202.74 147.66 T (-r) 398.94 147.66 T (epeater \336ber) 406.52 147.66 T (segment shall not) 463.14 147.66 T (exceed 1000 m for FOIRL, 10BASE-FB,) 202.74 135.66 T (and 10BASE-FL segments and shall) 375.97 135.66 T (not exceed 700 m) 202.74 123.66 T (for 10BASE-FP segments.) 278.24 123.66 T (b. The maximum allowable length of any r) 202.74 108.66 T (epeater to DTE \336ber segment shall) 383.58 108.66 T (not exceed 400 m for 10BASE-FL) 202.74 96.66 T (segments and shall not exceed 300 m for) 348.2 96.66 T FMENDPAGE %%EndPage: "4" 5 %%Page: "5" 5 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 207 739.85 T (ransmission System Model 1) 212 739.85 T 72 726.98 558 726.98 2 L 0.25 H N 72 75.33 558 75.33 2 L 2 Z N (Guide to Ethernet Con\336guration) 207 60.96 T 0 10 Q (5) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T 2 F (10BASE-FP) 220.74 680.66 T (segments and 400 m for segments terminated in a 10BASE-FL) 274.89 680.66 T (MAU.) 220.74 668.66 T -0.24 (c. Ther) 220.74 653.66 P -0.24 (e is no r) 250.86 653.66 P -0.24 (estriction on the number of mixing segments in this case.) 283.55 653.66 P 1 F -0.24 ( In other) 522.36 653.66 P (words, when using three repeater) 220.74 641.66 T (sets and four segments, all segments may be mix-) 355.63 641.66 T (ing) 220.74 629.66 T (segments if desired.) 236.02 629.66 T 72 366.04 558 389.04 C 207 374.04 558 374.04 2 L 0.25 H 2 Z 0 X 0 K N 72 374.04 198 374.04 2 L 0 Z N 0 0 612 792 C 0 9 Q 0 X 0 K (FIGURE 1.) 72 360.04 T 4 F (One possible con\336guration using four repeaters.) 207 360.04 T 1 10 Q (Figure 1 shows an example of one possible con\336guration using a mixture of segment) 207 338.38 T (types and a total of four repeaters. The maximum transmission path is determined by) 207 326.38 T (inspection; you look at the drawing of the network and determine which path contains) 207 314.38 T -0.29 (the most segments and repeaters. The maximum path in Figure 1 occurs between DTE 1) 207 302.38 P -0.06 (and DTE 3, since this is the signal path with the most repeaters and segments in it. This) 207 290.38 P (path includes \336ve segments linked with four repeaters.) 207 278.38 T (While the con\336guration guidelines emphasize the maximum limits of the system, you) 207 254.38 T (should beware of stretching things as far as they can go. Ethernets, like many other sys-) 207 242.38 T (tems, work best when they are not being pushed to their limits. As the performance of) 207 230.38 T (computers continues to increase, many network managers are \336nding that they need to) 207 218.38 T -0.38 (limit the number of computers they attach to a given Ethernet system to prevent network) 207 206.38 P (overload.) 207 194.38 T (The exact number of computers a given Ethernet can support is a local issue, and is) 207 170.38 T (determined by your mix of hardware and software and the network load the machines) 207 158.38 T (produce. However) 207 146.38 T (, you should be aware that network loads are steadily increasing at) 280.42 146.38 T (most sites and adjust your network designs accordingly) 207 134.38 T (.) 427.6 134.38 T 72 89.3 558 687.33 C 183.53 403.04 558 611.33 C 183.53 403.04 558 611.33 R 7 X 0 K V 435.72 572.57 M 419.45 576.64 408.23 557.2 392.14 564 D 0.5 H 2 Z 0 X N 493.23 556.71 M 499.88 556.22 525.75 563.38 512.77 548.59 D 507.39 542.45 478.55 536.86 489.73 522.74 D 493.86 517.53 503.19 518.23 510.55 520.53 D N 330.29 412.32 341.29 417.32 R 7 X V 0 X N 247.88 435.57 M 249.37 417.68 232.65 432.99 226.07 424.31 D 222.78 419.98 228.03 415.33 231.19 415.23 D 256.02 414.43 280.57 415.38 305.25 415 D 3 H N 246.11 433.41 250.61 443.16 R 7 X V 0.5 H 0 X N 282.5 531.92 M 266.04 531.49 245 529.92 251.91 543.07 D 1 H N 217.18 515.13 M 209.69 518.41 195.97 513.12 203.15 507.35 D 216.52 496.59 232.4 505.23 245.76 499.39 D 250.03 497.53 246.27 491.8 248.94 486.82 D N 215 513.07 219.5 517.82 R 7 X V 0.5 H 0 X N 1 10 Q (R) 368.7 479.42 T (Repeater Set) 226.18 590.14 T 274.18 563.71 349.5 563.71 2 L N (10BASE-FL) 282.11 576.57 T (500 meters) 280.86 553.71 T 195.86 523.71 307.29 523.71 2 L 3 H N 219.68 520.1 233.96 526.53 R V 0.5 H N 218.43 508.68 235.14 520.68 R 7 X V 0 X N 281.5 529.14 286 533.89 R 7 X V 0 X N 286.18 520.43 300.46 526.85 R V N 284.93 526.28 301.64 538.28 R 7 X V 0 X N (10BASE-5) 239.43 513.63 T (500 meters) 189.11 531.01 T (Mixing) 245.14 504.43 T (Link) 283 567.28 T 372.25 540.5 372.25 505.71 2 L N (10BASE-FL) 319.5 527 T (Link) 320.57 518.75 T (500) 375.86 526.93 T (meters) 375.86 519.79 T 244.25 431.82 252.25 436.07 R 7 X V 0 X N 299.25 428.32 328.25 457.32 R N 0 8 Q (DTE 1) 304.17 439.66 T 311.54 414.97 316.79 424.22 R N 309.79 422.45 318.54 428.2 R 7 X V 0 X N 304.54 418.7 304.54 409.95 2 L N 324.54 418.95 324.54 410.2 2 L N 302.54 410.95 326.04 417.7 R 7 X V 0 X N 300.29 409.07 306.57 420.57 R 7 X V 0 X N 323.29 409.07 330.29 420.57 R 7 X V 0 X N 1 10 Q (10BASE-2) 345.04 420.25 T (Mixing) 345.64 411.29 T 505.45 516.06 508.95 522.81 R 7 X V 0 X N 434.54 570.07 439.04 574.82 R 7 X V 0 X N 439.21 561.36 453.5 567.79 R V N 437.96 567.21 454.68 579.21 R 7 X V 0 X N (10BASE-5) 423.35 548.63 T (500 meters) 467.29 573.23 T (Mixing) 424.57 540.43 T (185 meters) 251.43 420.86 T 372 440.38 486 440.38 2 L N (10BASE-T) 401.18 452.63 T (Link) 401.93 442.88 T (100 meters) 401.29 429.52 T 486.5 424.88 516 453.88 R N 0 8 Q (DTE 3) 489.92 436.46 T 421 564 510.5 564 2 L 3 H N 372 460 372 441 2 L 0.5 H N 490.18 554.25 494.68 559 R 7 X V 0 X N 475.71 561.29 490 567.71 R V N 474.54 549.86 491.25 561.86 R 7 X V 0 X N 508.75 504.31 538.25 533.31 R 7 X V 0 X N (DTE 2) 512.17 515.89 T 349.53 460.33 394.53 505.33 R N 363.03 496.33 381.03 505.33 R N 363.03 460.33 381.03 469.33 R N 385.53 473.83 394.53 491.83 R N 90 450 9 9 372.03 482.83 A 381 482.75 385.25 482.75 2 L N 372 473.75 372 469.5 2 L N 372.25 491.75 372.25 496.25 2 L N 1 10 Q (R) 0 -90 368.62 566.66 TF 349.53 540.83 394.53 585.83 R 7 X V 0 X N 385.53 554.33 394.53 572.33 R 7 X V 0 X N 349.53 554.33 358.53 572.33 R 7 X V 0 X N 363.03 540.83 381.03 549.83 R 7 X V 0 X N 7 X 90 450 9 9 372.03 563.33 G 0 X 90 450 9 9 372.03 563.33 A 371.95 554.35 371.95 550.1 2 L 7 X V 0 X N 362.95 563.35 358.7 563.35 2 L 7 X V 0 X N 380.95 563.1 385.45 563.1 2 L 7 X V 0 X N (R) 368.7 559.92 T (R) 0 -90 247.87 567.16 TF 228.78 541.33 273.78 586.33 R 7 X V 0 X N 264.78 554.83 273.78 572.83 R 7 X V 0 X N 228.78 554.83 237.78 572.83 R 7 X V 0 X N 242.28 541.33 260.28 550.33 R 7 X V 0 X N 7 X 90 450 9 9 251.28 563.83 G 0 X 90 450 9 9 251.28 563.83 A 251.2 554.85 251.2 550.6 2 L 7 X V 0 X N 242.2 563.85 237.95 563.85 2 L 7 X V 0 X N 260.2 563.6 264.7 563.6 2 L 7 X V 0 X N (R) 247.95 560.42 T (R) 244.92 461.09 T 225.75 442 270.75 487 R 7 X V 0 X N 239.25 478 257.25 487 R 7 X V 0 X N 239.25 442 257.25 451 R 7 X V 0 X N 261.75 455.5 270.75 473.5 R 7 X V 0 X N 7 X 90 450 9 9 248.25 464.5 G 0 X 90 450 9 9 248.25 464.5 A 257.22 464.42 261.47 464.42 2 L 7 X V 0 X N 248.22 455.42 248.22 451.17 2 L 7 X V 0 X N 248.47 473.42 248.47 477.92 2 L 7 X V 0 X N (R) 244.92 461.09 T 394.45 559.31 397.95 566.06 R 7 X V 0 X N 247.62 537.75 254.38 541.25 R 7 X V 0 X N 244.88 487 251.62 490.5 R 7 X V 0 X N 72 89.3 558 687.33 C 0 0 612 792 C FMENDPAGE %%EndPage: "5" 6 %%Page: "6" 6 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 189 739.85 T (ransmission System Model 2) 194 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (6) 54 60.96 T 0 9 Q ( of) 59.56 60.96 T 0 10 Q ( 12) 70.54 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 54 672.33 540 675.33 C 189 674.48 540 674.48 2 L 0.25 H 2 Z 0 X 0 K N 54 674.48 180 674.48 2 L 0 Z N 0 0 612 792 C 0 12 Q 0 X 0 K (5.0) 163.33 679.33 T (T) 189 679.33 T (ransmission System Model 2) 195.67 679.33 T 1 10 Q (The second model provided by the IEEE standard for qualifying an Ethernet con\336gura-) 189 651.66 T -0.08 (tion provides a set of calculation aids, so that you can verify the operation of more com-) 189 639.66 P (plex Ethernet systems than those covered by the rule-based model. In the calculation) 189 627.66 T (model there are two sets of calculations that must be performed for each Ethernet sys-) 189 615.66 T (tem that you wish to verify) 189 603.66 T (.) 296.34 603.66 T (The \336rst set of calculations is based on ensuring that the round trip signal propagation) 189 579.66 T (delay is within the correct limits required to allow the essential collision detection) 189 567.66 T (mechanism to work properly) 189 555.66 T (. The second set of calculations veri\336es that the amount of) 303.55 555.66 T -0.26 (interfame gap shrinkage is within the correct limits. Let's begin with the calculations for) 189 543.66 P (signal delay) 189 531.66 T (.) 236.37 531.66 T 0 F (5.1) 166.11 501.66 T (Path Delay Calculation) 189 501.66 T 1 F (In a valid network it must be possible for any two DTEs to fairly contend for access to) 189 477.66 T (the shared Ethernet channel if they happen to transmit at the same time. Each DTE) 189 465.66 T (attempting to transmit must be noti\336ed of channel contention \050collision\051 by receiving a) 189 453.66 T (collision signal within the correct collision timing window) 189 441.66 T (. Also, the frame fragment) 422.39 441.66 T (created as a result of a collision must be less than 51) 189 429.66 T (1 bits long. These requirements) 398.2 429.66 T (place limits on the physical diameter) 189 417.66 T (, or maximum distance between DTEs, of a net-) 335.45 417.66 T (work. T) 189 405.66 T (o verify that your Ethernet system meets these limits you need to calculate the) 219.94 405.66 T (path delay of the maximum packet transmission path in your system.) 189 393.66 T (There are a number of engineering considerations that af) 189 369.66 T (fect the total path delay for) 415.3 369.66 T (each media type including collision detect time and the rate of signal propagation. The) 189 357.66 T (calculation model is designed to simplify the process of verifying a network by provid-) 189 345.66 T -0.03 (ing delay values for each segment type that incorporate the complete set of engineering) 189 333.66 P (considerations.) 189 321.66 T -0.19 (The operation of the calculation model is based on a simpli\336ed network topology called) 189 297.66 P (a generalized transmission path model. This model includes a \322left end,\323 one or more) 189 285.66 T (\322middle segments,\323 and a \322right end.\323 T) 189 273.66 T (o perform the calculations you determine the) 349.29 273.66 T -0.17 (worst-case path for your system and then you list the segment types that are used in that) 189 261.66 P (path. Next, you calculate the worst-case path delay based on the transmission path) 189 249.66 T (model and using the delay values provided in the standard.) 189 237.66 T 54 108.33 540 131.33 C 189 116.33 540 116.33 2 L 0.25 H 2 Z 0 X 0 K N 54 116.33 180 116.33 2 L 0 Z N 0 0 612 792 C 0 9 Q 0 X 0 K (FIGURE 2.) 54 102.33 T 4 F ( Generalized transmission path model from section 13 of the 802.3 standard.) 189 102.33 T 54 89.3 540 687.33 C 165.53 145.33 540 234.33 C 165.53 145.33 540 234.33 R 7 X 0 K V 171.46 184.61 198.46 211.61 R V 0.5 H 2 Z 0 X N 212.96 193.11 230.96 202.11 R 7 X V 0 X N 2 10 Q (DTE1) 172.18 194.77 T 2 7 Q (MAU) 213.61 195.27 T 247.96 193.11 265.96 202.11 R 7 X V 0 X N (MAU) 248.61 195.27 T 326.96 192.61 344.96 201.61 R 7 X V 0 X N (MAU) 327.61 194.77 T 361.96 192.86 379.96 201.86 R 7 X V 0 X N (MAU) 362.61 195.02 T 437.96 193.11 455.96 202.11 R 7 X V 0 X N (MAU) 438.61 195.27 T 472.96 193.36 490.96 202.36 R 7 X V 0 X N (MAU) 473.61 195.52 T 508.96 183.86 535.96 210.86 R 7 X V 0 X N 2 10 Q (DTE2) 509.68 193.96 T 198.43 197.79 212.93 197.79 2 L N 231.43 198.29 247.93 198.29 2 L N 265.68 198.04 282.18 198.04 2 L N 309.43 198.04 326.93 198.04 2 L N 380.18 197.79 395.93 197.79 2 L N 423.43 197.54 437.93 197.54 2 L N 490.93 197.54 508.68 197.54 2 L N 1 F (Left End Segment) 202.86 179.57 T (Mid-Segment\050s\051) 321.43 180.28 T (Right End Segment) 429.1 181.37 T 231.25 197 248 197 2 L N 345.42 198.29 361.93 198.29 2 L N 345.25 197 362 197 2 L N 456.17 198.54 472.68 198.54 2 L N 456 197.25 472.75 197.25 2 L N 169.57 150.86 186.32 150.86 2 L N 171.43 162.64 185.93 162.64 2 L N 1 9 Q (AUI Cable) 190 160.28 T (Medium) 191.43 150.28 T 394.71 184.11 424.71 211.11 R 7 X V 0 X N 2 7 Q (Repeater) 396.12 195.27 T 280.96 184.86 310.96 211.86 R 7 X V 0 X N (Repeater) 282.37 196.02 T 169.21 153.5 186.21 153.5 2 L N 54 89.3 540 687.33 C 0 0 612 792 C FMENDPAGE %%EndPage: "6" 7 %%Page: "7" 7 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 207 739.85 T (ransmission System Model 2) 212 739.85 T 72 726.98 558 726.98 2 L 0.25 H N 72 75.33 558 75.33 2 L 2 Z N (Guide to Ethernet Con\336guration) 207 60.96 T 0 10 Q (7) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T 1 F -0.07 (The transmission path model provides a way to structure the process of evaluating your) 207 680.66 P (network segments to \336nd the worst-case path delay) 207 668.66 T (. The model is based on the follow-) 410.93 668.66 T (ing operational scenario: DTE1 transmits. DTE1\325) 207 656.66 T (s transmission propagates to DTE2.) 404.09 656.66 T -0.14 (DTE2 begins transmitting at the last possible time before hearing the transmission from) 207 644.66 P -0.1 (DTE1, causing a collision and transmitting a total of 96 bits. DTE2\325) 207 632.66 P -0.1 (s transmission prop-) 477.13 632.66 P -0.19 (agates back to DTE1. DTE1 detects the collision, sends out a collision enforcement jam) 207 620.66 P (signal, and stops transmitting.) 207 608.66 T (Based on this scenario, the calculations for verifying the operation of an Ethernet must) 207 584.66 T -0.15 (ensure that the following conditions are met as described in this excerpt from Appendix) 207 572.66 P (A of the standard.) 207 560.66 T 1 9 Q ( \0501\051 DTE1 must detect collision before having transmitted the 512th bit, including the) 225 542.33 T (preamble and SFD bits.) 225 531.33 T (\0502\051 DTE1 must stop transmitting before having transmitted a minimum length frame,) 225 513.33 T (576 bits. \050512 bits after SFD\051.) 225 502.33 T (\0503\051 The overlap between DTE1's transmission and DTE2's transmission must be less) 225 484.33 T (than 575 bits \05051) 225 473.33 T (1 bits after the SFD transmitted by DTE1\051.) 285.33 473.33 T (For all existing segment types, the last condition is the limiting factor; if it is met, then) 225 455.33 T (the other two conditions are also met.) 225 444.33 T (The maximum time between the \336rst bit and the last bit of the overlapping transmis-) 225 426.33 T (sions of the two DTEs colliding across a path will be called the Path Delay V) 225 415.33 T (alue) 501.83 415.33 T -0.05 (\050PDV\051. Many factors contribute to this delay) 225 404.33 P -0.05 (. Simpli\336cation of the delay calculation, ...) 385.1 404.33 P -0.19 (can be achieved by using a set of base numbers, Segment Delay V) 225 393.33 P -0.19 (alues \050SDV\051, for each) 460.14 393.33 P (segment type that combines the factors that contribute to round trip delay associated) 225 382.33 T -0.02 (with that segment. The PDV \050Path Delay V) 225 371.33 P -0.02 (alue\051 is the sum the SDVs that comprise the) 380.14 371.33 P (path.) 225 360.33 T 1 7 Q (1) 244.97 363.93 T 1 10 Q (Y) 207 336.66 T (ou begin the process of calculating the worst-case PDV by determining which path in) 213.22 336.66 T -0.22 (your network is the maximum delay path. If you have a complete and up-to-date map of) 207 324.66 P (your network you can use that map to \336nd the maximum path between two DTEs.) 207 312.66 T (If your system is not well documented then you will have to investigate and map the) 207 288.66 T (network yourself. Y) 207 276.66 T (ou need to know what kinds of segments are in use, how long they) 286.22 276.66 T -0.04 (are, and how the system is laid out. Once you have this information, then you can deter-) 207 264.66 P (mine what the maximum path is and what kinds of segments are used in the maximum) 207 252.66 T (path.) 207 240.66 T (For each segment type used in the maximum-length path of your network, one of three) 207 216.66 T (segment delay values will be used in your calculation depending on whether the seg-) 207 204.66 T (ment is a left end, middle, or right end segment.) 207 192.66 T 72 122.29 558 138.29 C 207 130.29 351 130.29 2 L 0.25 H 2 Z 0 X 0 K N 0 0 612 792 C 1 9 Q 0 X 0 K (1.) 207 116.29 T 3 F (IEEE Std 802.3j-1993, IEEE Standar) 218.23 116.29 T (d for Local and Metr) 351.71 116.29 T (opolitan Ar) 426.77 116.29 T (ea Networks) 467.64 116.29 T (\320) 514.57 116.29 T ( Fiber) 519.06 116.29 T -0.36 (Optic Active and Passive Star) 207 106.29 P -0.36 (-Based Elements, T) 312.7 106.29 P -0.36 (ype 10BASE-F) 380.96 106.29 P 1 F -0.36 (. \050New Y) 433.03 106.29 P -0.36 (ork: Institute of Electrical) 464.6 106.29 P (and Electronics Engineers, October 13, 1993\051, p. 34.) 207 96.29 T FMENDPAGE %%EndPage: "7" 8 %%Page: "8" 8 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 189 739.85 T (ransmission System Model 2) 194 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (8) 54 60.96 T 0 9 Q ( of) 59.56 60.96 T 0 10 Q ( 12) 70.54 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 0 10 Q (5.2) 166.11 680.66 T (Calculating the W) 189 680.66 T (orst-case Path Delay V) 272.67 680.66 T (alue) 379.89 680.66 T 1 F -0.28 (T) 189 656.66 P -0.28 (o see how this all works, let's walk through a sample path delay calculation. T) 194.41 656.66 P -0.28 (o do this,) 501.4 656.66 P (refer back to Figure 1, which shows one possible maximum-length system using four) 189 644.66 T (repeaters and \336ve segments. As we\325ve seen, the rule-based con\336guration method says) 189 632.66 T (that this system is OK. T) 189 620.66 T (o check that, we\325ll evaluate the same system using the calcula-) 287.7 620.66 T (tion method. The table shown next provides the segment delay values used for making) 189 608.66 T (the worst-case path delay calculation.) 189 596.66 T (*Actual maximum segment length depends on cable characteristics.) 202.75 386.66 T (**N/A: Not Applicable, 10BASE-FB does not support end connections.) 202.75 373.66 T (T) 189 349.66 T (o begin with, we need to determine which path is the maximum delay path in the sys-) 194.41 349.66 T -0.04 (tem. By examination, you can see that the path in Figure 1 between DTE1 and DTE3 is) 189 337.66 P -0.02 (the maximum delay path since it contains the lar) 189 325.66 P -0.02 (gest number of segments and repeaters) 382.45 325.66 P (in the path between any two DTEs.) 189 313.66 T -0.16 (T) 189 289.66 P -0.16 (o perform the calculation for each segment in our system we need to compute the total) 194.41 289.66 P -0.08 (segment delay value \050SDV\051. The total SDV for a given segment is a combination of the) 189 277.66 P (base SDV and the delay represented by the length of the segment in question.) 189 265.66 T 2 F (SDV = Base + \050Length * \050Round T) 189 241.66 T (rip Delay/meter\051\051) 334.87 241.66 T 1 F (The SDV value for each segment type used in a network is found by adding the base) 189 217.66 T -0.34 (value for that segment type to the product of the segment length and round trip delay per) 189 205.66 P (meter \050R) 189 193.66 T (T Delay/meter\051. For a mixing segment like thin coaxial Ethernet the length of) 223.65 193.66 T (the segment is the length between the repeater connection and the farthest end of the) 189 181.66 T (segment for an end segment, or the length between two repeater connections for mid) 189 169.66 T (segments.) 189 157.66 T (If you are not sure what length a segment is you can use the maximum value shown,) 189 133.66 T (which has been set equal to the maximum media segment length allowed in the speci\336-) 189 121.66 T -0.31 (cations. In that case:) 189 109.66 P 2 F -0.31 (SDV = Max.) 271.86 109.66 P 1 F -0.31 (This assumes that your segment is not longer than the) 326.03 109.66 P (maximum value allowed in the media speci\336cations for that media type.) 189 97.66 T 54 564.33 540 587.33 C 189 572.33 540 572.33 2 L 0.25 H 2 Z 0 X 0 K N 54 572.33 180 572.33 2 L 0 Z N 0 0 612 792 C 0 9 Q 0 X 0 K (T) 54 558.33 T (ABLE 1.) 58.83 558.33 T 4 F (Segment Round-T) 189 558.33 T (rip Delay V) 262.1 558.33 T (alues in Bit T) 305.38 558.33 T (imes from IEEE 802.3 Standard, Section 13) 356.99 558.33 T 0 8 Q (Segment) 173.12 534.99 T (T) 180.96 525.99 T (ype) 185.26 525.99 T (Max) 240.72 534.99 T (Length) 235.18 525.99 T (Left) 290.34 534.99 T (Base) 279.45 525.99 T (End) 309 534.99 T (Max) 317.22 525.99 T (Mid-) 360.57 534.99 T (Base) 351.45 525.99 T (Segment) 381 534.99 T (Max) 393.72 525.99 T (Right) 437.57 534.99 T (Base) 432.45 525.99 T (End) 462 534.99 T (Max) 470.22 525.99 T (RT Delay/) 498 534.99 T (meter) 498 525.99 T 1 9 Q (10BASE5 Coax) 156 508.33 T (500) 241.76 508.33 T 270.25 503.58 305.75 519.83 R 6 X V 0 X (1) 279.05 508.33 T (1.75) 283.22 508.33 T 306.25 503.58 341.75 519.83 R 6 X V 0 X (55.05) 314.89 508.33 T (46.5) 353.14 508.33 T (89.8) 393.64 508.33 T 423.25 503.58 458.75 519.83 R 6 X V 0 X (169.5) 431.89 508.33 T 459.25 503.58 494.75 519.83 R 6 X V 0 X (212.8) 467.89 508.33 T (0.0866) 498 508.33 T (10BASE2 Coax) 156 493.33 T (185) 241.76 493.33 T 270.25 488.58 305.75 503.08 R 6 X V 0 X (1) 279.05 493.33 T (1.75) 283.22 493.33 T 306.25 488.58 341.75 503.08 R 6 X V 0 X (30.731) 312.64 493.33 T (46.5) 353.14 493.33 T (65.48) 391.39 493.33 T 423.25 488.58 458.75 503.08 R 6 X V 0 X (169.5) 431.89 493.33 T 459.25 488.58 494.75 503.08 R 6 X V 0 X (188.48) 465.64 493.33 T (0.1026) 498 493.33 T (FOIRL) 156 478.33 T (1000) 239.51 478.33 T 270.25 473.58 305.75 488.08 R 6 X V 0 X (7.75) 281.14 478.33 T 306.25 473.58 341.75 488.08 R 6 X V 0 X (107.75) 312.64 478.33 T (29) 356.51 478.33 T (129) 394.76 478.33 T 423.25 473.58 458.75 488.08 R 6 X V 0 X (152) 435.26 478.33 T 459.25 473.58 494.75 488.08 R 6 X V 0 X (252) 471.26 478.33 T (0.1) 498 478.33 T (10BASE-T) 156 463.33 T (100*) 239.51 463.33 T 270.25 458.58 305.75 473.08 R 6 X V 0 X (15.25) 278.89 463.33 T 306.25 458.58 341.75 473.08 R 6 X V 0 X (26.55) 314.89 463.33 T (42) 356.51 463.33 T (53.3) 393.64 463.33 T 423.25 458.58 458.75 473.08 R 6 X V 0 X (165) 435.26 463.33 T 459.25 458.58 494.75 473.08 R 6 X V 0 X (176.3) 467.89 463.33 T (0.1) 498 463.33 T (13) 508.9 463.33 T (10BASE-FP) 156 448.33 T (1000) 239.51 448.33 T 270.25 443.58 305.75 458.08 R 6 X V 0 X (1) 279.05 448.33 T (1.25) 283.22 448.33 T 306.25 443.58 341.75 458.08 R 6 X V 0 X (1) 312.98 448.33 T (1) 317.14 448.33 T (1.25) 321.3 448.33 T (61) 356.51 448.33 T (161) 394.76 448.33 T 423.25 443.58 458.75 458.08 R 6 X V 0 X (183.5) 431.89 448.33 T 459.25 443.58 494.75 458.08 R 6 X V 0 X (284) 471.26 448.33 T (0.1) 498 448.33 T (10BASE-FB) 156 433.33 T (2000) 239.51 433.33 T 270.25 428.58 305.75 443.08 R 6 X V 0 X (N/A**) 276.77 433.33 T 306.25 428.58 341.75 443.08 R 6 X V 0 X (N/A**) 312.77 433.33 T (24) 356.51 433.33 T (224) 394.76 433.33 T 423.25 428.58 458.75 443.08 R 6 X V 0 X (N/A**) 429.77 433.33 T 459.25 428.58 494.75 443.08 R 6 X V 0 X (N/A**) 465.77 433.33 T (0.1) 498 433.33 T (10BASE-FL) 156 418.33 T (2000) 239.51 418.33 T 270.25 413.58 305.75 428.08 R 6 X V 0 X (12.25) 278.89 418.33 T 306.25 413.58 341.75 428.08 R 6 X V 0 X (212.25) 312.64 418.33 T (33.5) 353.14 418.33 T (233.5) 391.39 418.33 T 423.25 413.58 458.75 428.08 R 6 X V 0 X (156.5) 431.89 418.33 T 459.25 413.58 494.75 428.08 R 6 X V 0 X (356.5) 467.89 418.33 T (0.1) 498 418.33 T (Excess AUI) 156 403.33 T (48) 244.01 403.33 T 270.25 398.33 305.75 413.08 R 6 X V 0 X (0) 286.75 403.33 T 306.25 398.33 341.75 413.08 R 6 X V 0 X (4.88) 317.14 403.33 T (0) 358.75 403.33 T (4.88) 393.64 403.33 T 423.25 398.33 458.75 413.08 R 6 X V 0 X (0) 439.75 403.33 T 459.25 398.33 494.75 413.08 R 6 X V 0 X (4.88) 470.14 403.33 T (0.1026) 498 403.33 T 225 547.33 225 398.33 2 L V 0.5 H 0 Z N 270 547.33 270 398.33 2 L V N 306 547.33 306 398.33 2 L V N 342 547.33 342 398.33 2 L V N 378 547.33 378 398.33 2 L V N 423 547.33 423 398.33 2 L V N 459 547.33 459 398.33 2 L V N 495 547.33 495 398.33 2 L V N 153 522.58 540 522.58 2 L V N 153 520.08 540 520.08 2 L V N 153 503.33 540 503.33 2 L V N 153 488.33 540 488.33 2 L V N 153 473.33 540 473.33 2 L V N 153 458.33 540 458.33 2 L V N 153 443.33 540 443.33 2 L V N 153 428.33 540 428.33 2 L V N 153 413.33 540 413.33 2 L V N FMENDPAGE %%EndPage: "8" 9 %%Page: "9" 9 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 207 739.85 T (ransmission System Model 2) 212 739.85 T 72 726.98 558 726.98 2 L 0.25 H N 72 75.33 558 75.33 2 L 2 Z N (Guide to Ethernet Con\336guration) 207 60.96 T 0 10 Q (9) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T (5.3) 184.11 680.66 T (Four Steps for Calculating W) 207 680.66 T (orst-Case Path Delay) 343.98 680.66 T 1 F (Here are the four steps that will develop a total worst-case path delay value \050PDV\051 for) 207 656.66 T (an Ethernet system.) 207 644.66 T 0 9 Q (1.) 207 626.66 T 1 10 Q (Determine the SDV for each segment in the maximum delay path.) 220.74 626.66 T 0 9 Q (2.) 207 611.66 T 1 10 Q (If a candidate for worst-case path has end segments of dif) 220.74 611.66 T (ferent types, perform the) 450.93 611.66 T (calculations twice using \336rst one end segment as the left end, then the other) 220.74 599.66 T (. The) 522.21 599.66 T (maximum value obtained should be used as the worst-case path delay value.) 220.74 587.66 T 0 9 Q (3.) 207 572.66 T 1 10 Q (From the table, determine the SDV for the sum of all AUI cables in excess of two) 220.74 572.66 T (meters, except the AUI cable associated with the left end DTE, which does not con-) 220.74 560.66 T (tribute to the total path delay value.) 220.74 548.66 T 0 9 Q (4.) 207 533.66 T 1 10 Q (Sum all SDVs from steps 1 through 3, plus a mar) 220.74 533.66 T (gin of up to \336ve bit times to form) 417.4 533.66 T (the total path delay value. The mar) 220.74 521.66 T (gin may be from zero to \336ve bits, but \336ve bit) 359.63 521.66 T (times is recommended. If the total path delay value is less than or equal to 575 bit) 220.74 509.66 T (times, then the path is quali\336ed in terms of worst-case delay) 220.74 497.66 T (.) 460.21 497.66 T 0 F (5.4) 184.11 467.66 T (Calculating the W) 207 467.66 T (orst-Case Delay for the Sample Network) 290.67 467.66 T 1 F (T) 207 443.66 T (o start with, we set out the segments in our maximum delay path as left end, middle,) 212.41 443.66 T (and right end segments. Let\325) 207 431.66 T (s begin by assuming that the thin Ethernet segment that) 320.54 431.66 T (DTE1 is attached to is the left end segment. That leaves us with three middle segments) 207 419.66 T (composed of a 10BASE5 segment and two link segments, and a right end segment) 207 407.66 T (which is a 10BASE-T link segment.) 207 395.66 T (Next, we begin the calculations with the left end, using the 185 meter 10BASE2 thin) 207 371.66 T (Ethernet segment. W) 207 359.66 T (e could calculate the segment delay value by adding the left end) 290.3 359.66 T (base \0501) 207 347.66 T (1.75\051 to the product of the round trip delay times the length \050185 * 0.1026 =) 235.21 347.66 T (18.981\051 to come up with a value of 30.731. Since 185 meters is the maximum segment) 207 335.66 T (length allowed for 10BASE2 segments, we could be lazy and simply look up the max) 207 323.66 T (left hand segment value in the table, which, not surprisingly) 207 311.66 T (, is also 30.731.) 445.92 311.66 T (The segment delay values provided in the table include allowances for an AUI cable of) 207 287.66 T (up to two meters length at each end of the segment, except for 10BASE-FB segments) 207 275.66 T -0.32 (which connect directly to special repeater hubs and never use AUI cables. In many thick) 207 263.66 P (Ethernet systems, however) 207 251.66 T (, or in other systems with outboard MAUs attached to seg-) 314.02 251.66 T (ments, the AUI is often longer than two meters. In that case, you can determine how) 207 239.66 T -0.37 (long your AUI cables are and use that length times the R) 207 227.66 P -0.37 (T Delay/meter for excess length) 429.12 227.66 P (AUIs to develop an extra delay value which is added to your total path delay value cal-) 207 215.66 T (culations.) 207 203.66 T -0.27 (If you\325re not sure how long the AUI cables are you may wish to use the maximum delay) 207 179.66 P (shown for an AUI cable, which is 4.88 for all segment locations, left end, middle, or) 207 167.66 T (right end.) 207 155.66 T (Since the left and right end segments in Figure 1 are dif) 207 131.66 T (ferent media types, we need to) 429.17 131.66 T (do two calculations to meet the requirement in step 2. T) 207 119.66 T (o meet step 2 we \336rst calculate) 429.21 119.66 T (the total path delay using the 10BASE2 segment as the left end segment and the) 207 107.66 T (10BASE-T segment as the right end. Then we swap their places and make the calcula-) 207 95.66 T FMENDPAGE %%EndPage: "9" 10 %%Page: "10" 10 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 189 739.85 T (ransmission System Model 2) 194 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (10) 54 60.96 T 0 9 Q ( of) 65.11 60.96 T 0 10 Q ( 12) 76.1 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 1 10 Q (tion again, using the 10BASE-T segment as the left end segment this time, and the) 189 680.66 T -0.01 (10BASE2 segment as the right end segment. The worst-case value that results from the) 189 668.66 P (two calculations is the one we use for our system.) 189 656.66 T -0.25 (Let\325) 189 632.66 P -0.25 (s continue by making the calculations for the middle segments. In Figure 1 there are) 205.1 632.66 P (three mid-segments composed of a maximum length 10BASE5 segment, and two 500) 189 620.66 T (meter long 10base-FL segments. By looking in the table under mid-segments we \336nd) 189 608.66 T -0.24 (that the 10BASE5 segment has a max delay value of 89.8. Let\325) 189 596.66 P -0.24 (s add in the delay for two) 437.58 596.66 P (AUI cables to allow for two maximum-length AUI cables in the segment, one at each) 189 584.66 T (connection to a repeater) 189 572.66 T (. That gives us an AUI cable delay of 9.76 to add to the total) 284.2 572.66 T (path delay) 189 560.66 T (.) 229.71 560.66 T (W) 189 536.66 T (e can calculate the segment delay value for the 10BASE-FL mid-segments by multi-) 197.63 536.66 T (plying the 500 meter length of each segment times the R) 189 524.66 T (T Delay/meter) 414.37 524.66 T (, which is 0.1,) 471.97 524.66 T (which gives us a result of 50. W) 189 512.66 T (e then add 50 to the mid-segment base value for a) 317 512.66 T (10BASE-FL segment, which is 33.5, for a total of 83.5. While we\325re at it, let\325) 189 500.66 T (s assume) 498.8 500.66 T (that we followed item 4 of the rule-based guidelines and used two AUI cables of 25) 189 488.66 T (meters length, for a total of 50 meters of AUI cable on the segment. W) 189 476.66 T (e can represent) 470.77 476.66 T (that length by adding 4.88 extra bit times to the total path delay) 189 464.66 T (.) 441.81 464.66 T (Finally) 189 440.66 T (, we have a right end segment of 10BASE-T twisted-pair Ethernet, which is the) 216.68 440.66 T (maximum length of 100 meters. The max value for 10BASE-T right end segment is) 189 428.66 T (176.3. Adding all the bit time values together we get the following:) 189 416.66 T (T) 189 281.66 T (o complete the process we need to perform a second set of calculations with the left) 194.41 281.66 T -0.08 (and right segments swapped to ful\336ll the requirement in step 2. In this case. the left end) 189 269.66 P (becomes a maximum length 10BASE-T segment, with a value of 26.55, and the right) 189 257.66 T -0.35 (end becomes a maximum length 10BASE-2 segment with a value of 188.48. Adding the) 189 245.66 P (bit time values again, we get the following:) 189 233.66 T 1 9 Q (Left End) 189.02 397.33 T (10BASE2) 275.42 397.33 T (30.731) 338.42 397.33 T (Mid-segment) 189.02 382.33 T (10BASE5) 275.42 382.33 T (89.8) 338.42 382.33 T (Mid-segment) 189.02 367.33 T (10BASE-FL) 275.42 367.33 T (83.5) 338.42 367.33 T (Mid-segment) 189.02 352.33 T (10BASE-FL) 275.42 352.33 T (83.5) 338.42 352.33 T (Right End) 189.02 337.33 T (10BASE-T) 275.42 337.33 T (176.3) 338.42 337.33 T (Excess Length AUI) 189.02 322.33 T (Quan. Three) 275.42 322.33 T (14.64) 338.42 322.33 T (T) 280.54 307.33 T (otal PDV =) 285.4 307.33 T (478.471) 338.42 307.33 T (Left End) 189.02 214.33 T (10BASE-T) 275.42 214.33 T (26.55) 338.42 214.33 T (Mid-segment) 189.02 199.33 T (10BASE5) 275.42 199.33 T (89.8) 338.42 199.33 T (Mid-segment) 189.02 184.33 T (10BASE-FL) 275.42 184.33 T (83.5) 338.42 184.33 T (Mid-segment) 189.02 169.33 T (10BASE-FL) 275.42 169.33 T (83.5) 338.42 169.33 T (Right End) 189.02 154.33 T (10BASE2) 275.42 154.33 T (188.48) 338.42 154.33 T (Excess Length AUI) 189.02 139.33 T (Quan. Three) 275.42 139.33 T (14.64) 338.42 139.33 T (T) 280.54 124.33 T (otal PDV =) 285.4 124.33 T (486.47) 338.42 124.33 T 332.42 407.33 332.42 302.33 2 L V 0.5 H 0 Z N 183.02 392.33 386.42 392.33 2 L V N 183.02 377.33 386.42 377.33 2 L V N 183.02 362.33 386.42 362.33 2 L V N 183.02 347.33 386.42 347.33 2 L V N 183.02 332.33 386.42 332.33 2 L V N 183.02 317.33 386.42 317.33 2 L V N 332.42 224.33 332.42 119.33 2 L V N 183.02 209.33 386.42 209.33 2 L V N 183.02 194.33 386.42 194.33 2 L V N 183.02 179.33 386.42 179.33 2 L V N 183.02 164.33 386.42 164.33 2 L V N 183.02 149.33 386.42 149.33 2 L V N 183.02 134.33 386.42 134.33 2 L V N FMENDPAGE %%EndPage: "10" 11 %%Page: "11" 11 612 792 0 FMBEGINPAGE 72 750.68 558 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 207 739.85 T (ransmission System Model 2) 212 739.85 T 72 726.98 558 726.98 2 L 0.25 H N 72 75.33 558 75.33 2 L 2 Z N (Guide to Ethernet Con\336guration) 207 60.96 T 0 10 Q (1) 522.84 60.96 T (1) 527.85 60.96 T 0 9 Q ( of) 533.41 60.96 T 0 10 Q (12) 546.89 60.96 T 1 F (Since the second set of calculations produced a lar) 207 680.66 T (ger value, this is the value we must) 408.33 680.66 T (use for the worst-case path delay for this Ethernet.) 207 668.66 T (Finally) 207 644.66 T (, the standard recommends adding a mar) 234.68 644.66 T (gin of up to \336ve bit times to form the) 396.32 644.66 T (total path delay value. W) 207 632.66 T (e are allowed to add anywhere from zero to \336ve bits mar) 306.4 632.66 T (gin,) 532.43 632.66 T (but \336ve bit times is recommended. Adding \336ve bit times for mar) 207 620.66 T (gin brings us up to) 464.45 620.66 T (491.47, which is less than the maximum of 575 bit times. Therefore, our sample net-) 207 608.66 T (work is quali\336ed in terms of the worst-case delay) 207 596.66 T (. All shorter paths will have smaller) 403.43 596.66 T (delay values, so all paths in the Ethernet system shown in Figure 1 meet the require-) 207 584.66 T (ments of the standard as far as path delay value is concerned.) 207 572.66 T -0.29 (Calculating the worst-case path delay value is not suf) 207 548.66 P -0.29 (\336cient to qualify an Ethernet under) 417.65 548.66 P (T) 207 536.66 T (ransmission System Model 2. T) 212.76 536.66 T (o complete the process you must also calculate the) 338.94 536.66 T (worst-case inter) 207 524.66 T (-packet gap shrinkage that results for the set of equipment used in your) 270.36 524.66 T (Ethernet.) 207 512.66 T 0 F (5.5) 184.11 482.66 T (Calculating W) 207 482.66 T (orst-Case Inter-Packet Gap Shrinkage) 272.9 482.66 T 1 F (The inter) 207 458.66 T (-packet gap \050IPG\051 may shrink on an Ethernet system when two successive) 243.16 458.66 T -0.03 (packets encounter dif) 207 446.66 P -0.03 (fering bit loss on the same path. This occurs because repeaters are) 292.23 446.66 P -0.21 (required to fully regenerate the preamble of each packet that passes through them. If the) 207 434.66 P (\336rst of two successive packets has experienced greater bit loss in its preamble than the) 207 422.66 T (second, then the process of regenerating the preamble in the repeater will result in a) 207 410.66 T (shrinkage in the inter) 207 398.66 T (-packet gap between the two packets.) 291.46 398.66 T -0.29 (The IPG shrinkage is calculated using a value for each segment type, called the segment) 207 374.66 P (variability value \050SVV\051. For each segment type along the worst-case path in your sys-) 207 362.66 T (tem, one of two segment variability values is used depending on the position of the seg-) 207 350.66 T (ment: whether it is the transmitting end or the mid segment.) 207 338.66 T 72 209.33 558 232.33 C 207 217.33 558 217.33 2 L 0.25 H 2 Z 0 X 0 K N 72 217.33 198 217.33 2 L 0 Z N 0 0 612 792 C 0 9 Q 0 X 0 K (FIGURE 3.) 72 203.33 T 4 F (V) 207 203.33 T (ariability model from Section 13 of the IEEE 802.3 standard.) 212.33 203.33 T 1 10 Q (The scenario for the operation of the variability model notes that the transmitting end) 207 181.66 T (segment and the mid segment variability values include the variability that may occur) 207 169.66 T (from the transmitting MAU through the associated repeater unit. Since IPG shrinkage) 207 157.66 T (only occurs when a repeater restores lost preamble bits, the \336nal segment connected to) 207 145.66 T (the receiving DTE does not contribute any variability and is not included in the calcula-) 207 133.66 T (tions.) 207 121.66 T 72 89.3 558 687.33 C 183.53 246.33 558 335.33 C 183.53 246.33 558 335.33 R 7 X 0 K V 189.46 285.61 216.46 312.61 R V 0.5 H 2 Z 0 X N 230.96 294.11 248.96 303.11 R 7 X V 0 X N 2 10 Q (DTE1) 190.18 295.77 T 2 7 Q (MAU) 231.61 296.27 T 265.96 294.11 283.96 303.11 R 7 X V 0 X N (MAU) 266.61 296.27 T 344.96 293.61 362.96 302.61 R 7 X V 0 X N (MAU) 345.61 295.77 T 379.96 293.86 397.96 302.86 R 7 X V 0 X N (MAU) 380.61 296.02 T 455.96 294.11 473.96 303.11 R 7 X V 0 X N (MAU) 456.61 296.27 T 490.96 294.36 508.96 303.36 R 7 X V 0 X N (MAU) 491.61 296.52 T 526.96 284.86 553.96 311.86 R 7 X V 0 X N 2 10 Q (DTE2) 527.68 294.95 T 216.43 298.79 230.93 298.79 2 L N 249.43 299.29 265.93 299.29 2 L N 283.68 299.04 300.18 299.04 2 L N 327.43 299.04 344.93 299.04 2 L N 398.18 298.79 413.93 298.79 2 L N 441.43 298.54 455.93 298.54 2 L N 508.93 298.54 526.68 298.54 2 L N 1 F (T) 188.71 274.14 T (ransmitting End) 194.47 274.14 T (Mid-segment\050s\051) 340.5 308.21 T (Final Segment) 454.96 307.85 T 249.25 298 266 298 2 L N 363.42 299.29 379.93 299.29 2 L N 363.25 298 380 298 2 L N 474.17 299.54 490.68 299.54 2 L N 474 298.25 490.75 298.25 2 L N 346.86 257.36 363.61 257.36 2 L N 348.71 269.14 363.21 269.14 2 L N 1 9 Q (AUI Cable) 366.57 266.78 T (Medium) 368.71 256.07 T 412.71 285.11 442.71 312.11 R 7 X V 0 X N 2 7 Q (Repeater) 414.12 296.27 T 298.96 285.86 328.96 312.86 R 7 X V 0 X N (Repeater) 300.37 297.02 T 346.5 260 363.5 260 2 L N 1 10 Q (Receive) 503.46 275.33 T (End) 538.39 275.71 T 72 89.3 558 687.33 C 0 0 612 792 C FMENDPAGE %%EndPage: "11" 12 %%Page: "12" 12 612 792 0 FMBEGINPAGE 54 750.68 540 750.68 2 L 2 H 0 Z 0 X 0 K N 0 9 Q (T) 189 739.85 T (ransmission System Model 2) 194 739.85 T 54 726.98 540 726.98 2 L 0.25 H N 54 75.33 540 75.33 2 L 2 Z N 0 10 Q (12) 54 60.96 T 0 9 Q ( of) 65.11 60.96 T 0 10 Q ( 12) 76.1 60.96 T 0 9 Q (Guide to Ethernet Con\336guration) 189 60.96 T 1 10 Q (T) 189 680.66 T (o make the calculation for path variability) 194.41 680.66 T (, therefore, you do not count the \336nal seg-) 361.42 680.66 T (ment attached to the DTE on the receive end. In a network where the receive and trans-) 189 668.66 T (mit end segments are not the same media type, however) 189 656.66 T (, you should use the end) 412.33 656.66 T (segment with the worst variability as the \322transmitting end\323 for the purposes of this cal-) 189 644.66 T (culation. This will provide the worst-case value for inter) 189 632.66 T (-packet gap shrinkage. The fol-) 413.92 632.66 T (lowing table provides the values used in the segment variability calculations.) 189 620.66 T (*N/A: Not Applicable, 10BASE-FB does not support end connections.) 189 482.66 T (T) 189 458.66 T (o make the calculation of worst-case path variability value \050PVV\051 perform the follow-) 194.41 458.66 T (ing steps.) 189 446.66 T 0 9 Q (1.) 189 428.66 T 1 10 Q -0.34 (Determining the segment variability value for each of the segments in the worst-case) 202.74 428.66 P (path, excluding the end segment with the lower SVV) 202.74 416.66 T (.) 413.26 416.66 T 0 9 Q (2.) 189 401.66 T 1 10 Q (Sum all of the SVVs from step 1 to form the total path variability value. If the PVV) 202.74 401.66 T (is less than or equal to 49, the path meets the speci\336cations in terms of worst-case) 202.74 389.66 T (variability) 202.74 377.66 T (.) 243.18 377.66 T (Let\325) 189 353.66 T (s \336nish the evaluation of the network shown in Figure 1 by calculating the worst-) 205.1 353.66 T (case path variability value for that network. This is done by evaluating the same worst-) 189 341.66 T (case path that we used in the path delay calculations. However) 189 329.66 T (, for the purposes of cal-) 438.68 329.66 T (culating segment variability we only evaluate the transmitting and mid-segments.) 189 317.66 T -0.05 (According to step 1, the transmitting segment should be set equal to the end segment in) 189 293.66 P (the network path that has the worst variability value. As shown in the table, the coax) 189 281.66 T (segment has the worst-case value, so we will assume that the 10BASE2 segment is the) 189 269.66 T (transmitting end. The mid segments consist of one coax and two link segments. That) 189 257.66 T (leaves a 10BASE-T receive end segment which is simply ignored. The totals are:) 189 245.66 T -0.17 (As you can see, the total path variability value for our sample network equals 43, which) 189 140.66 P -0 (is less than the 49 bit time maximum that is allowed by the standard. W) 189 128.66 P -0 (ith a worst-case) 474.78 128.66 P (path delay value of 491.47 bit times and a worst-case path variability value of 43, the) 189 116.66 T (Ethernet system shown in Figure 1 meets the speci\336cations and is quali\336ed under the) 189 104.66 T (calculation method of T) 189 92.66 T (ransmission System Model 2.) 284.42 92.66 T 54 588.33 540 611.33 C 189 596.33 540 596.33 2 L 0.25 H 2 Z 0 X 0 K N 54 596.33 180 596.33 2 L 0 Z N 0 0 612 792 C 0 9 Q 0 X 0 K (T) 54 582.33 T (ABLE 2.) 58.83 582.33 T 4 F (Segment V) 189 582.33 T (ariability V) 232.8 582.33 T (alues in Bit T) 273.58 582.33 T (imes) 325.2 582.33 T 0 8 Q (Segment T) 189 558.99 T (ype) 229.28 558.99 T (T) 293 558.99 T (ransmitting End) 297.45 558.99 T (Mid-segment) 372.71 558.99 T 1 9 Q (Coax) 189 544.33 T (16) 322.36 544.33 T (1) 396.89 544.33 T (1) 401.05 544.33 T (Link except 10BASE-FB) 189 529.33 T (10.5) 318.99 529.33 T (8) 398.97 529.33 T (10BASE-FB) 189 514.33 T (N/A*) 316.87 514.33 T (2) 398.97 514.33 T (10BASE-FP) 189 499.33 T (1) 322.53 499.33 T (1) 326.69 499.33 T (8) 398.97 499.33 T (T) 189.02 226.33 T (ransmitting End Coax) 194.2 226.33 T (16) 291.6 226.33 T (Mid-segment Coax) 189.02 211.33 T (1) 291.6 211.33 T (1) 295.76 211.33 T (Mid-segment Link) 189.02 196.33 T (8) 291.6 196.33 T (Mid-segment Link) 189.02 181.33 T (8) 291.6 181.33 T (T) 233.71 166.33 T (otal PVV =) 238.58 166.33 T (43) 291.6 166.33 T 287 571.33 287 494.33 2 L V 0.5 H 0 Z N 366.71 571.33 366.71 494.33 2 L V N 183 555.58 435.71 555.58 2 L V N 183 553.08 435.71 553.08 2 L V N 183 539.33 435.71 539.33 2 L V N 183 524.33 435.71 524.33 2 L V N 183 509.33 435.71 509.33 2 L V N 285.6 236.33 285.6 161.33 2 L V N 183.02 221.33 339.6 221.33 2 L V N 183.02 206.33 339.6 206.33 2 L V N 183.02 191.33 339.6 191.33 2 L V N 183.02 176.33 339.6 176.33 2 L V N FMENDPAGE %%EndPage: "12" 13 %%Trailer %%BoundingBox: 0 0 612 792 %%Pages: 12 1 %%DocumentFonts: Helvetica-Bold %%+ Times-Roman %%+ Times-Bold %%+ Times-Italic %%+ Helvetica .